AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习声音提取特征 更多内容
  • 响应提取

    响应提取 响应提取提取接口响应结果的某一部分,命名为参数,供后续测试步骤参数化调用。响应提取需要在前序测试步骤定义,后续测试步骤使用。 在前序测试步骤中,在“响应提取”页签创建要传递的参数。响应提取来源用到内置参数,请参考内置参数了解如何使用内置参数。响应提取同时支持正则表达式

    来自:帮助中心

    查看更多 →

  • 对待注入水印的源数据有什么要求?

    由于注入水印的原理是将水印原子信息嵌入到不同特征的数据中去,因此源数据特征越多,越能嵌入完整的水印信息、提高提取成功率,并且即使缺失部分数据也不影响水印提取。所以对需要注入水印的数据有如下要求: 待注入水印的源数据需要大于等于1000行。 小于1000行的源数据有可能因为特征不够导致提取水印失败。 尽量选

    来自:帮助中心

    查看更多 →

  • 数据库水印提取

    需为UTF8编码,请保证数据的完整性以及正确性。 提取方式 单击下拉框选择提取水印的方式,有损列嵌入以及无损列嵌入需要使用按列提取,无损行嵌入则需要使用按行提取。 分隔符 文件中的分隔符。例如","。 单击“确定”,完成水印提取任务创建。 查看结果 登录管理控制台。 单击左上角的,选择区域或项目。

    来自:帮助中心

    查看更多 →

  • OBS桶文件水印提取

    水印溯源”,进入“数据库水印提取”界面。 选择“OBS文件水印提取”页签。 单击左上角“新建任务”,进入“新建任务”页面。 单击添加文件选择需要进行提取水印的文件,OBS桶文件支持多选。 图1 选择文件 单击“确定”,提取水印任务创建完成。 单击目标任务名称,在弹框中查看水印提取任务状态和OBS桶文件的暗水印内容。

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 提交特征工程作业

    所有输出数据(用户物品特征特征映射、域特征值数目统计结果、训练集、测试集)的存储都路径,文件夹。 全局特征配置文件路径(global_features_information_path) 是 String 该文件为JSON格式,包含特征名、特征大类、特征值类型。全局特征文件详细内容可以通过查询全局特征配置获取。

    来自:帮助中心

    查看更多 →

  • 方案概述

    本方案将介绍一种虚拟数字人的方案,包含该方案的应用场景、方案架构、方案优势及其约束与限制。 虚拟数字人是基于近年来深度学习开发出的前沿技术而成形的一种“虚拟人”,它能够根据不同的应用场景,通过模拟人类行为并采用深度学习技术来实现自动化处理,使得被认知的过程更加准确、高效。本文将对此进行深入的分析,包括应用

    来自:帮助中心

    查看更多 →

  • 提交特征工程作业

    提交特征工程作业 提交特征工程作业 查询全局特征配置 父主题: 作业相关API

    来自:帮助中心

    查看更多 →

  • ModelArts

    自定义镜像 用于推理部署 从0-1制作自定义镜像并创建AI应用 05 自动学习 ModelArts自动学习是帮助人们实现AI应用的低门槛、高灵活、零代码的定制化模型开发工具。 自动学习简介 自动学习功能介绍 项目分类 图像分类 物体检测 预测分析 声音分类 文本分类 操作指导 准备数据 创建项目 数据标注

    来自:帮助中心

    查看更多 →

  • 学件简介

    主要实现数据的预处理,包括标签处理、缺失值填充、数据标准化等。 特征处理模块 主要实现对KPI的数据分布特征进行分析,自动选择特征及参数。并提供四大类,80+特征的自动提取。 模型管理模块 主要实现根据KPI的标签、数据分布特征等进行异常检测算法的自动选择、参数设置及模型训练、推理。 数据交互模块

    来自:帮助中心

    查看更多 →

  • 什么是内容审核

    内容审核-视频流 精准识别各类色情、暴恐、垃圾广告等违规内容,防御内容风险,提高视频流的审核效率,降低业务违规风险。 内容审核-文档 基于业界先进的深度学习及多模态审核模式,快速解析文档以及网页中的图文内容,精准高效识别敏感、色情、违禁等风险内容。

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 自动学习声音分类预测报错ERROR:input key sound is not in model

    自动学习声音分类预测报错ERROR:input key sound is not in model 根据在线服务预测报错日志ERROR:input key sound is not in model inputs可知,预测的音频文件是空。预测的音频文件太小,换大的音频文件预测。 父主题:

    来自:帮助中心

    查看更多 →

  • PERF03-02 选择合适规格的虚拟机和容器节点

    功耗密集型业务(如高性能计算、人工智能、深度学习等场景)主要就是消耗计算维度的容量。 内存密集型业务(如大数据处理、图像/视频处理、游戏开发、数据库等场景)主要消耗内存和存储维度的容量。 存储密集型业务(如大型数据库、大数据分析、大规模文件存储、编译构建等场景)可能会比较消耗存储的带宽。 根据业务的特征选择合适

    来自:帮助中心

    查看更多 →

  • 听别人声音小?

    听别人声音小? 先检查当前是扬声器还是听筒模式。 确认是否会议中所有人都听发言人声音比较小。 如果是,请发言人调大音量,如果还是不行,请反馈发言人日志。 如果不是,反馈本人日志。 可播放本地音频文件,测试本地扬声器设备是否正常。 父主题: 会议

    来自:帮助中心

    查看更多 →

  • 购买出门问问声音套餐

    如需使用“出门问问声音制作”方式自定义声音,并用于视频制作,需要参考下述内容进行操作。出门问问自定义声音暂不支持用于智能交互和视频直播。其支持的语言类型,如第三方声音支持的语言类型所示。 购买出门问问小语种克隆套餐包:如果用户需要使用“出门问问声音制作”方式自定义生成声音,需要在云商店购买出门问问小语种克隆套餐包。

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    训练声音分类模型 完成音频标注后,可以进行模型的训练。模型训练的目的是得到满足需求的声音分类模型。由于用于训练的音频,至少有2种以上的分类,每种分类的音频数不少于5个。 操作步骤 在开始训练之前,需要完成数据标注,然后再开始模型的自动训练。 在新版自动学习页面,单击项目名称进入运

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    也可能会降低模型的拟合能力。取值范围:[0,1)。 特征删除概率 用于定义特征删除机制中的删除概率。特征删除(也称为特征丢弃)是另一种正则化技术,它在训练过程中随机删除一部分的输入特征,以防止模型过拟合。这个值越大,删除的特征越多,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0

    来自:帮助中心

    查看更多 →

  • 客户声音制作案例

    客户声音制作案例 单击声音样例.zip,下载如表1所示的音频文件。 mos分是从音色相似度、情感表达效果和声音音质方面,进行整体效果综合评分的结果。 表1 音频文件 版本 类别 原音文件 合成音文件 版本差异 适用场景 基础版声音制作 女声 基础版媒体1.wav 基础版媒体2.wav

    来自:帮助中心

    查看更多 →

  • 声音录制指导文档下载

    声音录制指导文档下载 如需查看真人声音录制的的PDF文件,请单击声音制作录制指导下载文件。 父主题: 声音制作

    来自:帮助中心

    查看更多 →

  • 修改数据源特征

    修改数据源特征 功能介绍 修改数据源中的特征。 调试 您可以在 API Explorer 中调试该接口。 URI PUT /v2.0/{project_id}/workspaces/{workspace_id}/data-sources/{datasource_id}/data-struct

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了