AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习能预测多个值吗 更多内容
  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 预测性维护功能

    预测性维护功能 设备概览操作 登录数字孪生管理控制台。 单击左半侧目录“设备概览统计”。 图1 设备概览统计 预测设备台账操作 登录数字孪生管理控制台。 单击左半侧目录“预测设备台账”。 单击页面右侧页面内容左上方“添加”,进入“添加预测设备台账”页面。 图2 添加预测设备台账1

    来自:帮助中心

    查看更多 →

  • 查看预测外呼

    - 业务结果 标签 座席选择的外呼业务结果 成功 待定 失败 只读 没有表示座席尚未填写。 子状态 标签 外呼业务结果子状态 - 只读 - 业务描述 标签 座席填写的外呼业务的描述 - 只读 仅有手动外呼、预测外呼、预览外呼和预占外呼会有业务描述。 操作 按钮 查看外呼结果详情 详情

    来自:帮助中心

    查看更多 →

  • 最新动态

    创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级

    来自:帮助中心

    查看更多 →

  • 使用时序预测算法实现访问流量预测

    csv”数据文件存储的OBS目录。输入数据集只支持同一OBS目录下一个或多个同类型文件(数据列名称、长度、顺序完全一致);不支持对应OBS目录下存在多个不同类型文件。 “训练输出”:选择一个OBS空目录存储训练输出的模型。 “超参”:此算法提供的参数均提供了默认。如需修改,建议仔细阅读算法介绍,并根据参数解释进行修改。

    来自:帮助中心

    查看更多 →

  • 预测接口(文本标签)

    预测接口(文本标签) 分词模型 命名实体识别模型 父主题: 在线服务API

    来自:帮助中心

    查看更多 →

  • 分子属性预测(MPP)

    分子属性预测(MPP) ADMET属性预测接口 ADMET属性预测接口(默认+自定义属性) 父主题: API(AI辅助药物设计)

    来自:帮助中心

    查看更多 →

  • 训练预测大模型

    训练预测大模型 预测大模型训练流程与选择建议 创建预测大模型训练任务 查看预测大模型训练状态与指标 发布训练后的预测大模型 管理预测大模型训练任务 预测大模型训练常见报错与解决方案 父主题: 开发盘古预测大模型

    来自:帮助中心

    查看更多 →

  • 准备预测分析数据

    得到模型时的输出(预测项)。 除标签列外数据集中至少还应包含两个有效特征列(列的取值至少有两个且数据缺失比例低于10%)。 当前由于特征筛选算法限制,预测数据列建议放在数据集最后一列,否则可能导致训练失败。 表格数据集示例: 以银行存款预测数据集为例:根据预测人的年龄、工作类型、

    来自:帮助中心

    查看更多 →

  • 大数据分析

    游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。 根据策略模型输出预测的动作指令(Policy)。

    来自:帮助中心

    查看更多 →

  • 自动学习声音分类预测报错ERROR:input key sound is not in model

    自动学习声音分类预测报错ERROR:input key sound is not in model 根据在线服务预测报错日志ERROR:input key sound is not in model inputs可知,预测的音频文件是空。预测的音频文件太小,换大的音频文件预测。 父主题:

    来自:帮助中心

    查看更多 →

  • 训练物体检测模型

    的识别能力。 f1:F1 F1是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    的识别能力。 f1:F1 F1是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    应用领域:数字人照片建模算法可应用于影视制作、仿真形象生成、虚拟现实等领域,加速数字人3D模型产业的生产效率。 算法运行机制 选择一张已授权的人像照片作为输入。 输入的人像照片经过安全过滤,判断是否通过安全筛选,若不通过则不进行数据生成和结果返回操作。 将人像照片输入至算法模型中,

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    的识别能力。 f1:F1 F1是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练生成一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训

    来自:帮助中心

    查看更多 →

  • 方案概述

    模型数据;另一个用于存储数据集及数据集预测结果。 使用 AI开发平台 ModelArts,用于机器学习模型训练,预测汽车价值评估结果。 使用 函数工作流 FunctionGraph创建一个函数,进行数据处理并调用ModelArts在线服务获取预测结果,并存储至OBS桶。 在统一身份认证服务

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 概述

    征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行可信联邦学习,联合建模。 概念术语

    来自:帮助中心

    查看更多 →

  • 查询联邦预测作业列表

    Query参数 参数 是否必选 参数类型 描述 offset 是 Integer 起始位置,最小0,最大2的32次方-1 limit 是 Integer 查询个数,最小0,最大100 filter 否 String ''''''''过滤条件,最大长度512 { "startTime":

    来自:帮助中心

    查看更多 →

  • 执行纵向联邦模型训练作业

    Float 预测阈值,最小0,最大1 learning_rate 否 Float 学习率,最小0,最大1 batch_size 否 Integer 批大小,最小1 epoch 否 Integer 迭代次数,最小1 tree_num 否 Integer 树数量,最小1 tree_depth

    来自:帮助中心

    查看更多 →

  • 创建联邦预测作业

    创建联邦预测作业 企业A单击“联邦预测 > 批量预测 > 创建”按钮,进入联邦预测作业的创建页面。企业A需要通过“算法类型”、“训练作业”等筛选条件可以找到用于预测的模型,点选使用的模型后单击“确定”按钮即完成联邦预测作业的创建。 父主题: 使用 TICS 联邦预测进行新数据离线预测

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了