AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习模型 样本过少 更多内容
  • 样本管理

    样本管理 查询样本列表 查询单个样本详情 批量删除样本 父主题: 数据管理

    来自:帮助中心

    查看更多 →

  • 样本对齐

    样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用 TICS 可信联邦学习进行联邦建模

    来自:帮助中心

    查看更多 →

  • 最新动态

    样本对齐支持PSI算法 纵向联邦作业中支持对两方数据集进行样本对齐,在不泄露数据隐私的情况下计算出双方共有的数据,并将共有的数据作为后续特征选择、模型训练的数据集。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机

    来自:帮助中心

    查看更多 →

  • 查询样本对齐结果

    查询样本对齐结果 功能介绍 查询样本对齐结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/sample-alignment-result 表1 路径参数

    来自:帮助中心

    查看更多 →

  • 使用TICS可信联邦学习进行联邦建模

    使用TI CS 可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下 logging_steps 2 用于指定模型训练过程中,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 5000 指定模型训练过程中,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    机器学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 已发布区域:北京四、北京二 如何创建横向训练型作业?

    来自:帮助中心

    查看更多 →

  • 查看/标识/取消/下载样本

    样本”或“学习案例样本”页签,单击样本下方的/。 单个下载样本:在“样本库”、“AI训练样本”或“学习案例样本”页签,单击样本下方的或单击样本,在样本详情页面单击样本中的 按任务归类 单击对应的“采集样本数量”、“AI训练样本数”或“学习案例样本数”列的数值,“可以进入到样本清单明细页面,查看当前的样本明细

    来自:帮助中心

    查看更多 →

  • 查询样本列表

    sample_data Array of strings 样本数据列表。 sample_dir String 样本所在路径。 sample_id String 样本ID。 sample_name String 样本名称。 sample_size Long 样本大小或文本长度,单位是字节。 sample_status

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。 输出结果:数字人视频。

    来自:帮助中心

    查看更多 →

  • 应用场景说明

    上设置“AI训练”或“学习案例”,以标识出正样本。 专家经验库按不同采集来源的图片与视频进行分类,分为任务经验库和问题经验库(问题经验库暂未实现),其中任务经验库分为检查单、任务与告警三种归类方式。 用户可以通过专家经验库查看样本数量、样本详情等,并对样本进行管理。 父主题: 专家经验库

    来自:帮助中心

    查看更多 →

  • yaml配置文件参数配置说明

    必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下 logging_steps 2 用于指定模型训练过程中,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 500 指定模型训练过程中,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    登录管理控制台,进入 弹性云服务器 列表页面。 在待深度诊断的ECS的“操作”列,单击“更多 > 运维与监控 > 深度诊断”。 (可选)在“开通云运维中心并添加权限”页面,阅读服务声明并勾选后,单击“开通并授权”。 若当前账号未开通并授权COC服务,则会显示该页面。 在“深度诊断”页面,选择“深度诊断场景”为“全面诊断”。

    来自:帮助中心

    查看更多 →

  • 为什么微调后的盘古大模型只能回答训练样本中的问题

    为什么微调后的盘古大模型只能回答训练样本中的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下 logging_steps 2 用于指定模型训练过程中,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 5000 指定模型训练过程中,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    5000 指定模型训练过程中,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务。 当参数值>=max_steps时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<max_steps时,生成模型会每经过save_steps次,保存一次模型版本。

    来自:帮助中心

    查看更多 →

  • 产品优势

    产品优势 检测准确 基于深度学习技术和大量的样本库,帮助客户快速准确进行违规内容检测,维护内容安全。 功能丰富 提供文本、图像、音频、视频等内容检测,覆盖涉黄、广告、涉暴等多种违规风险的内容检测。 稳定可靠 内容审核 服务已成功应用于各类场景,基于华为等企业客户的长期实践,经受过复杂场景考验。

    来自:帮助中心

    查看更多 →

  • 获取智能任务的信息

    object 通过样本属性搜索。 parent_sample_id String 父样本ID。 sample_dir String 根据样本所在目录搜索(目录需要以/结尾),只搜索指定目录下的样本,不支持目录递归搜索。 sample_name String 根据样本名称搜索(含后缀名)。

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    创建模型微调任务 模型微调是指调整大型语言模型的参数以适应特定任务的过程,适用于需要个性化定制模型或者在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下 logging_steps 2 用于指定模型训练过程中,多少步输出一次日志。日志包括了训练进度、学习率、损失值等信息。建议设置 save_steps 5000 指定模型训练过程中,每多少步保存一次模型。保存的模型可以用于后续的训练或推理任务

    来自:帮助中心

    查看更多 →

  • 产品优势

    ark等加速服务,为您提供低成本高性能的基因测序解决方案。支持对接深度学习框架,方便您深度解读报告。 秒级并发 基因容器利用容器技术的秒级并发能力,可将WGS从30小时缩短至5小时以内,对比同类竞品,使用相同样本的情况下,资源利用率大幅提升。 简单易用 不单独维护小资源池,使用华

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了