AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习的原理 更多内容
  • MemArtsCC基本原理

    MemArtsCC基本原理 MemArtsCC是一款面向存算分离架构分布式计算侧缓存系统,采用极轻量化架构设计,部署在计算侧集群中,通过智能预取远端对象存储上数据提供高速缓存能力,从而来加速计算任务执行。 MemArtsCC在存储层面将远端对象存储(OBS)上对象进行切片,并

    来自:帮助中心

    查看更多 →

  • Doris基本原理

    和被更新数据进行标记删除,同时将新数据写入新文件。在查询时,所有被标记删除数据都会在文件级别被过滤,读取出数据就都是最新数据,消除了读时合并中数据聚合过程,并且能够在很多情况下支持多种谓词下推。因此在许多场景都能带来比较大性能提升,尤其是在有聚合查询情况下。 Duplicate模型

    来自:帮助中心

    查看更多 →

  • 如何获得微认证的学习材料?

    如何获得微认证学习材料? 华为云开发者学堂提供在线视频课程,对应课程实验手册可以在微认证详情页面上获取。 父主题: 微认证课程学习常见问题

    来自:帮助中心

    查看更多 →

  • 如何快速发现网站漏洞?

    如何快速发现网站漏洞? 漏洞扫描原理是,通过爬虫获取用户网站URL列表,然后对列表中所有URL进行扫描。 扫描策略分为:极速策略、标准策略、深度策略。如图1所示。 选择深度扫描可以更深层次发现漏洞,建议您优先选择“深度策略”。如果用户需要快速扫描,可以在创建扫描任务时,“扫描策略”选择“极速策略”。

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 HPA工作原理 HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩控制器,HPA周期性检查Pod度量数据,计算满足HPA资源所配置目标数值所需副本数量,进而调整目标资源(如Deployment)replicas字段。

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    创建AHPA策略 HPA工作原理 HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩控制器,HPA周期性检查Pod度量数据,计算满足HPA资源所配置目标数值所需副本数量,进而调整目标资源(如Deployment)replicas字段。 想

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM 将根据源端字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时字段类型映射 CDM在 数据仓库 服务(Data Warehouse Service,简称DWS)中自动建表时,DWS表与源表字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • HBase基本原理

    定义Column数量和类型。HBase中表列非常稀疏,不同行个数和类型都可以不同。此外,每个CF都有独立生存周期(TTL)。可以只对行上锁,对行操作始终是原始。 Column 与传统数据库类似,HBase表中也有列概念,列用于表示相同类型数据。 RegionServer数据存储

    来自:帮助中心

    查看更多 →

  • Hive基本原理

    L、Derby。Hive中元数据包括表名字,表列和分区及其属性,表属性(是否为外部表等),表数据所在目录等。 Hive结构 Hive为单实例服务进程,提供服务原理是将HQL编译解析成相应MapReduce或者HDFS任务,图1为Hive结构概图。 图1 Hive结构

    来自:帮助中心

    查看更多 →

  • Kafka基本原理

    Kafka基本原理 Kafka是一个分布式、分区、多副本消息发布-订阅系统,它提供了类似于JMS特性,但在设计上完全不同,它具有消息持久化、高吞吐、分布式、多客户端支持、实时等特性,适用于离线和在线消息消费,如常规消息收集、网站活性跟踪、聚合统计系统运营数据(监控数据

    来自:帮助中心

    查看更多 →

  • HetuEngine基本原理

    HetuEngine客户端,使用者通过客户端向服务端提交查询请求,然后将执行结果取回并展示。 HSBroker HetuEngine服务管理,用作计算实例资源管理校验,健康监控与自动维护等。 HSConsole 对外提供数据源信息管理,计算实例管理,自动化任务查看等功能可视化操作界面和RESTful接口。

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景功能介绍。 乳腺癌数据集:基于医学图像中提取若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习方式帮助不具备算法开发能力业务开发者实现算法开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练参数自动化选择和模型自动调优自动学习功能,让零AI基础业务开发者可快速完成模型训练和部署。 M

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    创建自动学习项目时,如何快速创建OBS桶及文件夹? 自动学习生成模型,存储在哪里?支持哪些其他操作? 自动学习训练后模型是否可以下载?

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 微认证课程学习的形式是什么样的?

    微认证课程学习形式是什么样? 微认证课程学习分为在线视频学习和在线实验操作。 父主题: 微认证课程学习常见问题

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据清洗:数据清洗是指对数据进行去噪、纠错或补全过程。 数据清洗是在数据校验基础上,对数据进行一致性检查,处理一些无效值。例如在深度学习领域,可以根据用户输入正样本和负样本,对数据进行清洗,保留用户想要类别,去除用户不想要类别。 数据选择:数据选择一般是指从全量数据中选择数据子集过程。 数据可以通

    来自:帮助中心

    查看更多 →

  • 内网采集权限与原理

    Server:使用sa账号。 采集原理:连接数据库,基于数据库查询语句进行采集。 中间件采集 权限要求: Redis:使用具有基本访问权限普通账号即可。 Kafka:需要具备访问所有topic权限以及对topic容量等信息进行访问权限。 采集原理:利用Java语言编写应用程序,集成对应中间件的SDK(Software

    来自:帮助中心

    查看更多 →

  • ClickHouse基本原理

    化执行。SIMD全称是Single Instruction Multiple Data,即用单条指令操作多条数据,通过数据并行以提高性能一种实现方式 ( 其他还有指令级并行和线程级并行 ),它原理是在CPU寄存器层面实现数据并行操作。 关系模型与SQL查询 ClickH

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了