AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习的调参技巧 更多内容
  • 深度学习模型预测

    模型权值存放在OBS上完整路径。在keras中通过model.save_weights(filepath)可得到模型权值。 word2vec_path 是 word2vec模型存放在OBS上完整路径。 示例 图片分类预测我们采用Mnist数据集作为流输入,通过加载预训练deeple

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    模型权值存放在OBS上完整路径。在keras中通过model.save_weights(filepath)可得到模型权值。 word2vec_path 是 word2vec模型存放在OBS上完整路径。 示例 图片分类预测我们采用Mnist数据集作为流输入,通过加载预训练deeple

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速工具,但是它们实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集训练。D

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习方式帮助不具备算法开发能力业务开发者实现算法开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练参数自动化选择和模型自动自动学习功能,让零AI基础业务开发者可快速完成模型训练和部署。 M

    来自:帮助中心

    查看更多 →

  • 提示词写作进阶技巧

    提示词写作进阶技巧 设置背景及人设 理解底层任务 CoT思维链 考察模型逻辑 父主题: 提示词写作实践

    来自:帮助中心

    查看更多 →

  • 模板写作技巧

    。这种方法虽然可以直截了当解决问题,但效果并不是很好。因为带入了重复,从而使模板可维护性和易用性变差。 方式二:使用concat内置函数 通过concat内置函数将多个小字符串拼接为一个更长、更完整字符串。concat内置函数参数可以是任意类型变量,支持将数字和字符串混合拼接。示例如下:

    来自:帮助中心

    查看更多 →

  • 更多玩表技巧

    在表单“高级设置”中多次填表,指的是同一表格,允许用户多次提交,每次提交内容均会纳入统计。 什么是周期填表 在表单“高级设置”中周期填表,指的是以周为单位,设定单位时间内具体时间填写。用户仅能在设定这几天内填写,勾选提醒参与人后,则会在设定时间点提醒未填写用户。 未填如何设置“提醒通知”

    来自:帮助中心

    查看更多 →

  • 文档基本使用技巧

    接口使用时注意使用时机、参数说明。“注意”是强调每个接口使用注意事项并带有调用该接口相关回,对接时需要仔细阅读。 父主题: 使用前必读

    来自:帮助中心

    查看更多 →

  • VS Code使用技巧

    VS Code中查看远端日志 打开VS Code配置文件settings.json VS Code背景配置为豆沙绿 VS Code中设置远端默认安装插件 VS Code中把本地指定插件安装到远端或把远端插件安装到本地 Notebook如何离线安装VS Code Server

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    深度诊断E CS 操作场景 ECS支持操作系统深度诊断服务,提供GuestOS内常见问题自诊断能力,您可以通过方便快捷自诊断服务解决操作系统内常见问题。 本文介绍支持深度诊断操作系统版本以及诊断结论说明。 约束与限制 该功能依赖云运维中心(Cloud Operations

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    如,图像分类、物体检测等等。不同项目对数据要求,使用AI开发手段也是不一样。 准备数据 数据准备主要是指收集和预处理数据过程。 按照确定分析目的,有目的性收集、整合相关数据,数据准备是AI开发一个基础。此时最重要是保证获取数据真实可靠性。而事实上,不能一次性将

    来自:帮助中心

    查看更多 →

  • 调优前:学习表结构设计

    tions5.asp。 选择存储方式 表存储模型选择是表定义第一步。业务属性是表存储模型决定性因素,根据下表选择适合当前业务存储模型。 一般情况下,如果表字段比较多(大宽表),查询中涉及到列不多情况下,适合列存储。如果表字段个数比较少,查询大部分字段,那么选择行存储比较好。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集特征数据不够理想,而此数据集数据类别和一份理想数据集部分重合或者相差不大时候,可以使用特征迁移功能,将理想数据集特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计是以任务形式分派学员学习数据 自学记录统计是学员在知识库进行自学学习数据 统计数据统计是具体培训资源(实操作业、考试等)学员学习数据 父主题: 培训管理

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 场景介绍

    学习到使用者偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键组成部分。它主要任务是根据给定输入和反馈来预测奖励值,从而指导学习算法方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    指按某种策略由已知判断推出新判断思维过程。人工智能领域下,由机器模拟人类智能,使用构建神经网络完成推理过程。 在线推理 在线推理是对每一个推理请求同步给出推理结果在线服务(Web Service)。 批量推理 批量推理是对批量数据进行推理批量作业。 昇腾芯片 昇腾芯片又叫

    来自:帮助中心

    查看更多 →

  • 方案概述

    企业数字化水平普遍较弱,大部分企业没有成熟IT团队,无法驾驭多个系统管理工作; 成品家具、门窗、瓷砖卫浴等行业终端门店普遍缺少设计师,无法可视化呈现产品搭配效果; 定制品类从设计到生产端系统不互通,导致门店端设计、报价、下单工作繁复,工厂端审拆单效率低、出错率高; 核心卖点: AI算法:业内先进AI装修

    来自:帮助中心

    查看更多 →

  • 场景介绍

    学习到使用者偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键组成部分。它主要任务是根据给定输入和反馈来预测奖励值,从而指导学习算法方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我课堂 MOOC课程 我考试

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了