AI开发平台ModelArts 

ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。

 
 

    深度学习的svr模型 更多内容
  • 执行作业

    常规配置:通过界面点选算法使用常规参数,具体支持参数请参考表1。 表1 常规配置参数 算法类型 参数名 参数描述 XGBoost 学习率 控制权重更新幅度,以及训练速度和精度。取值范围为0~1小数。 树数量 定义XGBoost算法中决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50的整数。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集特征数据不够理想,而此数据集数据类别和一份理想数据集部分重合或者相差不大时候,可以使用特征迁移功能,将理想数据集特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计是以任务形式分派学员学习数据 自学记录统计是学员在知识库进行自学学习数据 统计数据统计是具体培训资源(实操作业、考试等)学员学习数据 父主题: 培训管理

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 应用场景

    断出不合规语音内容。 场景优势: 实时性:可以实时监测和分析直播间中语音内容,保障直播间秩序和安全。 支持特殊声音识别:支持特殊声音识别模型,如娇喘、呻吟、敏感声纹等。 社交语音消息 在社交语音消息平台上实时对用户发送语音消息进行审核,及时判断出包含不良内容语音消息,帮

    来自:帮助中心

    查看更多 →

  • 基本概念

    在旧版体验式开发模式下,模型训练服务支持特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角图标中“数据处理”菜单下面的数据处理算子。 模型包 将模型

    来自:帮助中心

    查看更多 →

  • AI开发基本流程介绍

    如,图像分类、物体检测等等。不同项目对数据要求,使用AI开发手段也是不一样。 准备数据 数据准备主要是指收集和预处理数据过程。 按照确定分析目的,有目的性收集、整合相关数据,数据准备是AI开发一个基础。此时最重要是保证获取数据真实可靠性。而事实上,不能一次性将

    来自:帮助中心

    查看更多 →

  • 训练脚本说明

    训练脚本说明 yaml配置文件参数配置说明 各个模型深度学习训练加速框架选择 模型NPU卡数取值表 各个模型训练前文件替换 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 功能介绍

    提升模型训练速度,满足海量样本数据加速训练需求。 图17 支持训练过程多个GPU运行指标监控 支持在线模型评估,在不进行模型发布前提下直接查看模型解译效果,支持上传文件、WMTS和WMS图层进行模型评估。 集成主流深度学习框架,包括PyTorch,TensorFlow,J

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我课堂 MOOC课程 我考试

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    操作步骤-手机端: 登录手机app,点击“我”进入个人信息页面 图4 个人中心入口 点击“个人中心”并进入,在个人中心页面,点击“我学习”后面的箭头,进入“我学习 页面。 图5 个人中心页面(我岗位、我技能) 在“我学习页面,点击每个具体课程卡片,进入到课程详情页面。可

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • AI Gallery功能介绍

    Gallery深谙开发者在人工智能项目推进过程中面临实际困难,尤其是高昂模型训练与部署成本,这往往成为创意落地阻碍。通过大量开发者实践,针对主流昇腾云开源大模型,沉淀最佳算力组合方案,为开发者在开发模型最后一步,提供最佳实践算力方案、实践指南和文档,节省开发者学习和试错资金成本,提升学习和开发效率。 父主题:

    来自:帮助中心

    查看更多 →

  • 排序策略

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 盘古自然语言大模型的适用场景有哪些

    盘古自然语言大模型适用场景有哪些 自然语言处理 模型是一种参数量极大预训练模型,是众多自然语言处理下游任务基础模型。学术界和工业界实践证明,随着模型参数规模增加,自然语言处理下游任务效果显著提升,这得益于海量数据、大量算力以及深度学习飞跃发展。 基于自然语言处理大模型的预训

    来自:帮助中心

    查看更多 →

  • StreamingML

    StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)

    来自:帮助中心

    查看更多 →

  • 基本概念

    多样性和一致性是评估LLM生成语言两个重要方面。 多样性指模型生成不同输出之间差异。一致性指相同输入对应不同输出之间一致性。 重复惩罚 重复惩罚(repetition_penalty)是在模型训练或生成过程中加入惩罚项,旨在减少重复生成可能性。通过在计算损失函数(用于优化模型指标)时增加

    来自:帮助中心

    查看更多 →

  • 最新动态

    面向智慧商超的人脸采集技能。本技能使用多个深度学习算法,实时分析视频流,自动抓取画面中清晰人脸上传至您后台系统,用于后续实现其他业务。 商用 多区域客流分析技能 面向智慧商超客流统计技能。本技能使用深度学习算法,实时分析视频流,自动统计固定时间间隔客流信息。 车牌识别技能 面向智慧商超车牌识别技能。

    来自:帮助中心

    查看更多 →

  • 更新MaaS模型服务的模型权重

    参考创建我模型,用待更新模型权重文件新建一个我模型。关键参数请参见表1。 表1 创建模型关键参数说明 参数 说明 来源模型 选择和待升级模型服务“部署模型”同一个模型框架。 权重设置与词表 选择“自定义权重”。 选择自定义权重路径 选择存放待更新模型权重文件OBS路径,必须选择到模型文件夹。

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    增加更多的特征,使输入数据具有更强表达能力。 特征挖掘十分重要,尤其是具有强表达能力特征,可以抵过大量弱表达能力特征。 特征数量并非重点,质量才是,总之强表达能力特征最重要。 能否挖掘出强表达能力特征,还在于对数据本身以及具体应用场景深刻理解,这依赖于经验。 调整参数和超参数。 神经网络中:学

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了