AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习层数和节点数 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型 概要 准备工作 导入预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeedAccelerate都是针对深度学习训练加速的工具,但是它们的实现方式应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    能否挖掘出强表达能力的特征,还在于对数据本身以及具体应用场景的深刻理解,这依赖于经验。 调整参数超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。

    来自:帮助中心

    查看更多 →

  • 执行作业

    参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    该功能依赖UniAgent。UniAgent是统一数据采集Agent,支持脚本下发执行。 若E CS 未安装UniAgent,则无法免登录发送命令,详细内容,请参见为ECS安装UniAgent。 仅Linux操作系统的ECS支持深度诊断。 支持深度诊断的操作系统类型及版本。 操作系统类型 版本 CPU架构

    来自:帮助中心

    查看更多 →

  • 节点镜像层数量异常检查

    节点镜像层数量异常检查 检查项内容 检查到您的节点上镜像层数量过多(>5000层),可能导致docker/containerd启动过慢,影响docker/containerd标准输出。 如果您集群中使用了nginx,可能会出现转发变慢等问题。 解决方案 请登录节点手动删除用不到的镜像,防止后续升级异常。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    阶段内容已添加内容展示资源所属类型,鼠标移动至名称后可单击预览素材内容(暂不支持scorm,HTML压缩包的预览); 解锁时间可以设置资源的解锁时间,学员必须到解锁时间后才能学习该资源,线下课考勤无解锁时间的设置。 默认显示系统估算学时,仅计算音视频考试的时长,作为添加内容时长的参考,支持手动编辑。 图4 添加内容1

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 学习任务

    自由模式:可以不按顺序学习课件,可随意选择一个开始学习 解锁模式:设置一个时间,按时间进程解锁学习,解锁模式中暂时不支持添加线下课岗位测评 图4 选择模式 阶段任务 图5 阶段任务 指派范围:选择该学习任务学习的具体学员 图6 指派范围1 图7 指派范围2 设置:对学习任务进行合格标准、奖励等设置

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

  • 标准策略、极速策略和深度策略有哪些区别?

    “标准策略”:扫描的网站URL数量耗时都介于“极速策略”深度策略”两者之间。 有些接口只能在登录后才能访问,建议用户配置对应接口的用户名密码,漏洞管理服务才能进行深度扫描。 父主题: 网站扫描类

    来自:帮助中心

    查看更多 →

  • 方案概述

    方式更加科学、合理,有助于提高管制策略的有效性针对性。 闭环管理与自主学习机制:国蓝中天实现了污染摸排流程化反馈数据的闭环管理与自主学习。这种机制使得管制系统能够不断学习优化,进一步提高污染管治的有效性。通过持续的数据反馈学习,系统能够不断完善自身,适应不断变化的污染状况。

    来自:帮助中心

    查看更多 →

  • 节点数据收集

    -h命令输出,以及mount命令输出 网络信息 收集netstat -anp命令输出,并拷贝/etc/resolv.conf/etc/hosts文件 进程信息 收集ps -aux命令输出 时间信息 收集dateuptime命令输出 历史命令输入 收集当前用户所有输入的命令 IEF数据 IEF数据库数据 拷

    来自:帮助中心

    查看更多 →

  • 节点数据血缘

    点数据血缘 数据血缘方案简介 配置数据血缘 查看数据血缘 父主题: 节点参考

    来自:帮助中心

    查看更多 →

  • BF16和FP16说明

    BF16FP16说明 在大模型训练中,BF16(Brain Floating Point)FP16(Float16)都是使用的半精度浮点数格式,但它们在结构适用性上有一些重要的区别。 BF16:具有8个指数位7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了