AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习cuda安装 更多内容
  • 准备工作

    如果提示未开通则根据提示跳转至开通页面完成服务开通。 进入“基础配置”页面,选择Python技术栈,CPU架构选择X86计算,CPU/内存选择2U4G,单击“下一步”。 进入“工程配置”页面,选择不创建工程,然后单击“确定”,完成实例创建。 安装TensorFlow 进入CodeArts IDE

    来自:帮助中心

    查看更多 →

  • Notebook专属预置镜像列表

    镜像一:pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 镜像二:pytorch1.10-cuda10.2-cudnn7-ubuntu18.04 镜像三:pytorch1.4-cuda10.1-cudnn7-ubuntu18.04 镜像一:pytorch1.8-cuda10.2-cudnn7-ubuntu18

    来自:帮助中心

    查看更多 →

  • 创建模型不同方式的场景介绍

    元模型和容器镜像中的元模型,可对所有迭代和调试的模型进行统一管理。 约束与限制 自动学习项目中,在完成模型部署后,其生成的模型也将自动上传至模型列表中。但是自动学习生成的模型无法下载,只能用于部署上线。 创建模型、管理模型版本等功能目前是免费开放给所有用户,使用此功能不会产生费用。

    来自:帮助中心

    查看更多 →

  • 使用模型

    Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 部署GPU服务支持的Cuda版本是多少?

    部署GPU服务支持的Cuda版本是多少? 默认支持Cuda版本为10.2,如果需要更高的版本,可以提工单申请技术支持。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 标注镜像Dockerfile示例

    ckerfile示例如下(xxx替换为实际路径): # 载入基础镜像,训练或评测引擎一般需包含cuda/cudnn等算法基础环境。用户可手动制作或拉取官方镜像 FROM xxx/cuda:11.0.3-devel-ubuntu18.04 # 设置工作目录【可选】默认为ROOT,用户可修改USER及PATH

    来自:帮助中心

    查看更多 →

  • 管理GPU加速型ECS的GPU驱动

    管理GPU加速型E CS 的GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动 卸载GPU加速型ECS的GPU驱动

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 镜像制作(训练)

    kerfile示例如下(xxx替换为实际路径): # 载入基础镜像,训练或评测引擎一般需包含cuda/cudnn等算法基础环境。用户可手动制作或拉取官方镜像 FROM xxx/cuda:11.0.3-devel-ubuntu18.04 # 设置工作目录【可选】默认为ROOT,用户可修改USER及PATH

    来自:帮助中心

    查看更多 →

  • 业务代码问题

    data. C error: Expected .* fields” 日志提示“max_pool2d_with_indices_out_cuda_frame failed with error code 0” 训练作业失败,返回错误码139 训练作业失败,如何使用开发环境调试训练代码?

    来自:帮助中心

    查看更多 →

  • 自定义镜像创建Notebook样例

    k(在基础镜像中安装化学分子格式转换工具Open Babel),详细步骤如下所示: 步骤1:安装容器引擎 步骤2:获取Notebook基础镜像 步骤3:制作并上传镜像 步骤4:创建并使用Notebook 步骤1:安装容器引擎 在制作 自定义镜像 时,您需要准备一台安装有Docker的

    来自:帮助中心

    查看更多 →

  • FAQ

    FAQ CUDA和CUDNN run.sh脚本测试ModelArts训练整体流程 ModelArts环境挂载目录说明 infiniband驱动的安装 如何保证训练和调试时文件路径保持一致 父主题: 专属资源池训练

    来自:帮助中心

    查看更多 →

  • CCE集群

    kerfile示例如下(xxx替换为实际路径): # 载入基础镜像,训练或评测引擎一般需包含cuda/cudnn等算法基础环境。用户可手动制作或拉取官方镜像 FROM xxx/cuda:11.0.3-devel-ubuntu18.04 # 设置工作目录【可选】默认为ROOT,用户可修改USER及PATH

    来自:帮助中心

    查看更多 →

  • HCIA-AI

    200USD 考试内容 HCIA-AI V3.0考试包含人工智能基础知识、机器学习深度学习、昇腾AI体系、华为AI全栈全场景战略知识等内容。 知识点 人工智能概览 10% 机器学习概览 20% 深度学习概览 20% 业界主流开发框架 12% 华为AI开发框架MindSpore 8%

    来自:帮助中心

    查看更多 →

  • 什么是自动学习?

    什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    网信算备520111252474601240045号 算法基本原理 分身数字人驱动算法是指通过深度学习生成数字人驱动模型,模型生成后,输入音频来合成数字人视频的一种技术。 其基本情况包括: 输入数据:真人视频、音频。 算法原理:通过深度学习算法来学习真人视频,生成驱动该真人形象的数字人模型。通过该模型输入音频,合成数字人视频。

    来自:帮助中心

    查看更多 →

  • 使用python3.6-torch1.4版本镜像环境安装MMCV报错

    原因分析 MMCV的依赖与PyTorch版本不匹配。 处理方法 可参考链接的内容,根据PyTorch和CUDA版本安装对应版本的MMCV。 父主题: 预置算法运行故障

    来自:帮助中心

    查看更多 →

  • 训练作业运行失败排查指导

    sm_50 sm_60 sm_70'”。 原因:训练作业使用的镜像CUDA版本只支持sm_37、sm_50、sm_60和sm_70的加速卡,不支持sm_80。 处理建议:使用自定义镜像创建训练作业,并安装高版本的cuda以及对应的PyTorch版本。 查看训练作业的“日志”,出现报错

    来自:帮助中心

    查看更多 →

  • 智能问答机器人版本

    问答模型训练 轻量级深度学习 - √ √ √ 重量级深度学习 - - - √ 调用 问答机器人 √ √ √ √ 问答诊断 - √ √ √ 运营面板 √ √ √ √ 高级设置 基本信息 √ √ √ √ 知识共享 - - √ √ 应用授权 - - √ √ 全局配置 √ √ √ √ 标签管理

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了