AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 预测算法 更多内容
  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    以调整学习率。取值范围:(0,1)。 权重衰减系数 用于定义权重衰减的系数。权重衰减是一种正则化技术,可以防止模型过拟合。取值需≥0。 学习率 用于定义学习率的大小。学习率决定了模型参数在每次更新时变化的幅度。如果学习率过大,模型可能会在最优解附近震荡而无法收敛。如果学习率过小,

    来自:帮助中心

    查看更多 →

  • 标签传播算法(Label Propagation)

    标签传播算法(Label Propagation) 概述 标签传播算法(Label Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点

    来自:帮助中心

    查看更多 →

  • 启动智能任务

    集,不支持启动主动学习和自动分组任务,支持预标注任务。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例筛选等多种手

    来自:帮助中心

    查看更多 →

  • 预测性维护功能

    预测性维护功能 设备概览操作 登录数字孪生管理控制台。 单击左半侧目录“设备概览统计”。 图1 设备概览统计 预测设备台账操作 登录数字孪生管理控制台。 单击左半侧目录“预测设备台账”。 单击页面右侧页面内容左上方“添加”,进入“添加预测设备台账”页面。 图2 添加预测设备台账1

    来自:帮助中心

    查看更多 →

  • 查看预测外呼

    查看预测外呼 前提条件 管理员已为指定座席人员建立预测外呼任务,并启动任务。 座席处于空闲态,预测外呼配有外呼数据且已经启动。 操作步骤 外呼业务代表进入云联络中心,输入账号、密码登录。 选择“外呼任务 > 座席外呼任务”。 图1 外呼任务 点击外呼结果,可查看外呼结果。 表1 预测外呼结果提示元素说明

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    时间序列预测 流数据处理中经常需要对于时间序列数据进行建模和预测,建模是指提取数据中有用的统计信息和数据特征,预测是指使用模型对未来的数据进行推测。 DLI 服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive

    来自:帮助中心

    查看更多 →

  • 创建预测分析项目

    可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。

    来自:帮助中心

    查看更多 →

  • ModelArts入门指引

    面向AI开发零基础的用户,您可以使用ModelArts在AI Gallery中预置的模型、算法、数据、Notebook等资产,零代码完成AI建模和应用。 如果您想了解如何使用ModelArts Standard一键部署现有的模型,并在线使用模型进行预测,您可以参考使用ModelArts Standard一键完成商超商品识别模型部署。

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 预测接口(文本标签)

    预测接口(文本标签) 分词模型 命名实体识别模型 父主题: 在线服务API

    来自:帮助中心

    查看更多 →

  • 分子属性预测(MPP)

    分子属性预测(MPP) ADMET属性预测接口 ADMET属性预测接口(默认+自定义属性) 父主题: API(AI辅助药物设计)

    来自:帮助中心

    查看更多 →

  • 准备预测分析数据

    得到模型时的输出(预测项)。 除标签列外数据集中至少还应包含两个有效特征列(列的取值至少有两个且数据缺失比例低于10%)。 当前由于特征筛选算法限制,预测数据列建议放在数据集最后一列,否则可能导致训练失败。 表格数据集示例: 以银行存款预测数据集为例:根据预测人的年龄、工作类型、

    来自:帮助中心

    查看更多 →

  • 使用TICS联邦预测进行新数据离线预测

    使用 TICS 联邦预测进行新数据离线预测 场景描述 准备数据 发布数据集 创建联邦预测作业 发起联邦预测 父主题: 纵向联邦建模场景

    来自:帮助中心

    查看更多 →

  • 场景介绍

    用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入和反馈来预测奖励值,从而指导学习算法的方向,帮助强化学习算法更有效地优化策略

    来自:帮助中心

    查看更多 →

  • ADMET属性预测接口

    ADMET属性预测接口 功能介绍 计算小分子的物化性质,包括吸收(adsorption)、分布(distribution)、代谢(metabolism)、清除(excretion)与毒性(toxicity)。 URI POST /v1/{project_id}/admet 表1 路径参数

    来自:帮助中心

    查看更多 →

  • 重保风险预测

    重保风险预测 使用场景 仅白名单用户可以使用重保风险预测。 操作步骤 登录管理控制台。 选择“服务列表 > 管理与监管 > 优化顾问”优化顾问服务页面。 左侧导航树选择“容量优化 > 重保风险预测”。 单击“风险分析”进行风险预测配置。 批量参数设置,选择活动时间段。 配置容量阈

    来自:帮助中心

    查看更多 →

  • 时间序列预测

    时间序列预测 流数据处理中经常需要对于时间序列数据进行建模和预测,建模是指提取数据中有用的统计信息和数据特征,预测是指使用模型对未来的数据进行推测。DLI服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive

    来自:帮助中心

    查看更多 →

  • 联邦预测作业

    联邦预测作业 概述 批量预测 实时预测 查看作业计算过程和作业报告

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了