AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习 训练时间 更多内容
  • 产品术语

    购、下载和反馈意见的场所。 AI引擎 可支持用户进行机器学习深度学习、模型训练的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 B 标签列 模型训练输出的预测值,对应数据集的一个特征列。例如鸢尾花分类建模

    来自:帮助中心

    查看更多 →

  • 场景介绍

    ,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。 它基于一个预先训练好的模型,通过调

    来自:帮助中心

    查看更多 →

  • 创建训练服务

    创建训练任务,详细请参考模型训练。 删除训练任务。 模型训练工程描述 训练服务的描述信息,支持单击“”重新编辑。 切换到其他的训练工程、联邦学习工程、训练服务或超参优化服务的模型训练页面中。 模型训练运行环境信息查看和配置。 新建训练工程、联邦学习工程、训练服务或超参优化服务。 2(模型训练任务) 根据训练状态快速检索训练任务。

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现声音分类

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    ne执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 表1 GS_OPT_MODEL字段 名称 类型 描述 oid oid 数据库对象id。 template_name name 机器学习模型的模板名,决定训练和预测调用的

    来自:帮助中心

    查看更多 →

  • 方案概述

    Turbo高性能,加速训练过程 训练数据集高速读取,避免GPU/NPU因存储I/O等待产生空闲,提升GPU/NPU利用率。 大模型TB级Checkpoint文件秒级保存和加载,减少训练任务中断时间。 3 数据导入导出异步化,不占用训练任务时长,无需部署外部迁移工具 训练任务开始前将数据从OBS导入到SFS

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deeps

    来自:帮助中心

    查看更多 →

  • 附录:训练常见问题

    expandable_segments:True 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deeps

    来自:帮助中心

    查看更多 →

  • 使用模型

    鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 智能文档解析

    智能文档解析 功能介绍 智能文档解析基于领先的深度学习技术,对含有结构化信息的文档图像进行键值对提取、 表格识别 与版面分析并返回相关信息。不限制版式情况,可支持多种证件、票据和规范行业文档,适用于各类行业场景。 应用场景 金融:银行回单、转账存单、理财信息截图等。 政务:身份证、结婚证、居住证、各类企业资质证照。

    来自:帮助中心

    查看更多 →

  • 分页查询智能任务列表

    任务的列表。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。 “主动学习”表示系统将自动使用半监督学习、难例筛选等多种手段进行智能标注,降低人工标注量,帮助用户找到难例。

    来自:帮助中心

    查看更多 →

  • 自动学习中偏好设置的各参数训练速度大概是多少

    自动学习中偏好设置的各参数训练速度大概是多少 偏好设置中: performance_first:性能优先,训练时间较短,模型较小。对于TXT、图片类训练速度为10毫秒。 balance:平衡 。对于TXT、图片类训练速度为14毫秒 。 accuracy_first:精度优先,训练

    来自:帮助中心

    查看更多 →

  • 方案概述

    对大气污染防治中“第一时间发现问题”、“第一时间排查问题”、“第一时间解决问题”的挑战,通过“以算代测”、“人工智能研判”、“闭环学习”三大创新技术实现全域污染无盲点网格化监测,实时定位污染热点区域,自动研判疑似污染源,智能化推送污染事件并进行自主闭环学习。提高环保督查执法效率,

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    需要个性化定制模型或者在特定任务上追求更高性能表现的场景。这是通过在与任务相关的微调数据集上训练模型来实现的,所需的微调量取决于任务的复杂性和数据集的大小。在深度学习中,微调用于改进预训练模型的性能。 支持将平台资产中心预置的部分模型作为微调前基础模型,也可以选择微调后的新模型作为基础模型再次进行微调。

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练生成一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现文本分类

    来自:帮助中心

    查看更多 →

  • 训练物体检测模型

    后等待工作流按顺序进入训练节点。 模型将会自动进入训练,无需人工介入,训练时间相对较长,建议您耐心等待。如果关闭或退出此页面,系统仍然在执行训练操作。 在“物体检测”节点中,待训练状态由“运行中”变为“运行成功”,即完成模型的自动训练。 图2 运行成功 训练完成后,您可以单击物体

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:sft、rm、ppo、dpo。 sft代表指令监督微调; rm代表奖励模型训练; ppo代表PPO训练; dpo代表DPO训练。

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:[pt、sft、rm、ppo、dpo],pt代表预训练,sft代表指令监督微调,rm代表奖励模型训练,ppo代表PPO训练,dpo代表DPO训练。

    来自:帮助中心

    查看更多 →

  • 训练

    训练 上传数据至OBS并预热到SFS Turbo中 创建训练任务 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    文本分类:识别一段文本的类别。 使用自动学习功能构建模型的端到端示例,请参见“快速入门>使用自动学习构建模型”。 自动学习流程介绍 使用ModelArts自动学习开发AI模型无需编写代码,您只需上传数据、创建项目、完成数据标注、发布训练、然后将训练的模型部署上线。具体流程请参见图1。新版自动学习中,该流程可

    来自:帮助中心

    查看更多 →

  • 套餐包

    使用不同规格的套餐包。 ModelArts提供了AI全流程开发的套餐包,面向有AI基础的开发者,提供机器学习深度学习的算法开发及部署全功能,包含数据处理、模型开发、模型训练、模型管理和部署上线流程。 约束限制 套餐包在购买和使用时的限制如下: 套餐包和购买时选定的区域绑定,套餐

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了