企业通过WeLink更方便与上下游供应商联接,行政更高效为员工提供各类服务,HR轻松实现考勤管理、培训管理自动化,大大提升了企业的组织效率和执行效率。

    深度学习 手写数字识别 精度 更多内容
  • 提交排序任务API

    域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    击链接或识别二维码进行学习 操作路径:培训-学习-学习项目-更多-分享 图21 分享1 图22 分享2 数据监控 通过查看学员培训进度,监控学员学习状态 操作路径:培训-学习-学习项目-数据 图23 数据监控1 图24 数据监控2 任务监控统计的是以任务形式分派的学员学习数据 自

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 方案概述

    务纳管边缘 服务器 并将技能下发到边缘服务器。 方案优势 算法高效高精度 采用先进的深度学习、AR算法,深入研究各行业业务场景,提高技术在复杂场景中的适配度,支持多终端视觉定位导航,高效高精度大场景重建,厘米级定位精度、毫秒级位姿输出。 端边云协同架构 端边云协同架构支持端侧使用到最

    来自:帮助中心

    查看更多 →

  • 位置精度(position

    位置精度(position_confidence) 数值 含义 0 不具备或不可用 1 500米 2 200米 3 100米 4 50米 5 20米 6 10米 7 5米 8 2米 9 1米 10 0.5米 11 0.2米 12 0.1米 13 0.05米 14 0.02米 15

    来自:帮助中心

    查看更多 →

  • 固定精度型

    固定精度型 名称 描述 存储空间 取值范围 字面量 DECIMAL 固定精度的十进制数。精度最高支持到38位,但精度小于18位能保障性能最好。 Decimal有两个输入参数: precision:总位数,默认38 scale:小数部分的位数,默认0 说明: 如果小数位为零,即十进制(38

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendC

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    模态模型的精度验证。多模态模型的精度验证,建议使用开源MME数据集和工具(GitHub - BradyFU/Awesome-Multimodal-Large-Language-Models at Evaluation)。 步骤一:配置精度测试环境 获取精度测试代码。精度测试代码存

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evalua

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍两个精度测评工具。如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen;以及使用lm-eval工具开展语言模型的推理精度测试,数据集包含

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何使用lm-eval工具开展语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍如何进行推理精度测试,请在Notebook的JupyterLab中另起一个Terminal,进行推理精度测试。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-LLM的llm_tools/llm_evaluation目录中,代码目录结构如下。

    来自:帮助中心

    查看更多 →

  • 精度问题诊断

    得到和标杆数据相同的输出,因此可以判断出转换得到的text_encoder模型是产生pipeline精度误差的根因。通过下一小节可以进一步确认模型精度的差异。 父主题: 模型精度调优

    来自:帮助中心

    查看更多 →

  • 推理精度测试

    推理精度测试 本章节介绍两个精度测评工具。如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen;以及使用lm-eval工具开展语言模型的推理精度测试,数据集包含

    来自:帮助中心

    查看更多 →

  • 车辆高程精度(ele

    车辆高程精度(ele_confidence) 数值 含义 0 不具备或不可用 1 500米 2 200米 3 100米 4 50米 5 20米 6 10米 7 5米 8 2米 9 1米 10 50厘米 11 20厘米 12 10厘米 13 5厘米 14 2厘米 15 1厘米 父主题:

    来自:帮助中心

    查看更多 →

  • 订购华为RPA-WeAutomate工具

    订购华为RPA-WeAutomate工具 华为RPA-WeAutomate工具结合OCR、NLP等深度学习AI算法,通过模拟并增强人与计算机的交互过程,实现工作流程自动化。快速构建企业级智能自动化平台,一站式获取RPA+AI+小程序能力,助力客户打通数字化转型最后一公里。 华为RPA-WeAutomate工具页面已

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 通用类

    通用表格识别 提取表格内的文字和所在行列位置信息,适应不同格式的表格。同时也识别表格外部的文字区域。用于各种单据和报表的电子化,恢复结构化信息。 通用文字识别 提取图片内的文字及其对应位置信息,并能够根据文字在图片中的位置进行结构化整理工作。 手写文字识别 识别文档中的手写文字信息,并将识别的结构化结果返回给用户。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了