GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习 看gpu还是cpu 更多内容
  • CPU管控

    CPU管控 GS_263200040 错误码: Cgroup failed to attach (tid %d) into "%s" group: %s(%d). 解决方案:请确认控制组%s的路径是否已被更改或删除了。 level: WARNING 父主题: WLM

    来自:帮助中心

    查看更多 →

  • volcano

    2 cce-gpu-topology-predicate GPU拓扑调度预选算法 - - cce-gpu-topology-priority GPU拓扑调度优选算法 - - cce-gpu 结合U CS GPU插件支持GPU资源分配,支持小数GPU配置 说明: 小数GPU配置的前提条

    来自:帮助中心

    查看更多 →

  • 准备工作

    Online,单击“创建实例”。 如果提示未开通则根据提示跳转至开通页面完成服务开通。 进入“基础配置”页面,选择Python技术栈,CPU架构选择X86计算,CPU/内存选择2U4G,单击“下一步”。 进入“工程配置”页面,选择不创建工程,然后单击“确定”,完成实例创建。 安装TensorFlow

    来自:帮助中心

    查看更多 →

  • 方案概述

    成快速户型图生成 户型图部件自动识别:利用深度学习技术,自动识别2D户型图的墙体、门窗、比例尺。 户型图精校:利用比例尺生成3D真实世界坐标点,呈现精准户型 图2 户型图 硬装、柜体智能布置 自动化精装设计:基于AI和大数据,通过深度学习16.3亿图纸方案,实现精装方案自动设计.

    来自:帮助中心

    查看更多 →

  • 创建Notebook实例

    CPU算力增强型,适用于密集计算场景下运算 GPU规格 “GPU: 1*Vnt1(32GB)|CPU: 8 核 64GB”:GPU单卡规格,32GB显存,适合深度学习场景下的算法训练和调测 “GPU: 1*Tnt004(16GB)|CPU: 8核* 32GB”: GPU单卡规格,16GB显存,推理计算

    来自:帮助中心

    查看更多 →

  • 查询服务详情

    status String 服务状态,取值包含: running:运行中,服务正常运行。 deploying:部署中,服务正在部署,包含打镜像和调度资源部署。 concerning:告警,后端实例部分存在异常。 failed:失败,服务部署失败,失败原因可以事件和日志标签页。 stopped:停止。

    来自:帮助中心

    查看更多 →

  • 云容器实例环境

    命名空间名称:新建命名空间的名称。 命名空间类型:“通用计算型”和“GPU加速型”。 通用计算型:支持创建含CPU资源的容器实例及工作负载,适用于通用计算场景。 GPU加速型:支持创建含GPU资源的容器实例及工作负载,适用于深度学习、科学计算、视频处理等场景。 企业项目: 该参数针对企业用

    来自:帮助中心

    查看更多 →

  • 什么是云容器实例

    图2 产品架构 基于云平台底层网络和存储服务(VPC、ELB、NAT、EVS、OBS、SFS等),提供丰富的网络和存储功能。 提供高性能、异构的基础设施(x86 服务器 GPU加速服务器、Ascend加速服务器),容器直接运行在物理服务器上。 使用Kata容器提供虚拟机级别的安

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 节点规格说明

    260INT4 TOPS 机器学习深度学习、训练推理、科学计算、地震分析、计算金融学、渲染、多媒体编解码。 CCE Standard集群 推理加速型 Pi1 NVIDIA P4(GPU直通) 2560 5.5TFLOPS 单精度浮点计算 机器学习深度学习、训练推理、科学计算、地震分析、计算金融学、渲染、多媒体编解码。

    来自:帮助中心

    查看更多 →

  • 管理GPU加速型ECS的GPU驱动

    管理GPU加速型ECS的GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动

    来自:帮助中心

    查看更多 →

  • 基础指标:Modelarts指标

    指标含义 取值范围 单位 CPU ma_container_cpu_util CPU使用率 该指标用于统计测量对象的CPU使用率。 0~100 百分比(%) ma_container_cpu_used_core CPU内核占用量 该指标用于统计测量对象已经使用的CPU核个数 ≥0 核(Core)

    来自:帮助中心

    查看更多 →

  • 快速管理第三方边缘应用

    下拉列表选择架构信息。 设置“容器规格”。 根据实际情况配置CPU、内存、GPU、NPU的申请配额及限制配额。 单击“下一步”,进行部署配置。 设置“重启策略”,单击“提交”,完成版本的添加。 总是重启:当应用退出时,无论是正常退出还是异常退出,系统都会重新启动应用。 失败时重启:当应用异常退出时,系统会重新启动应用。

    来自:帮助中心

    查看更多 →

  • 功能总览

    CCE基于Volcano调度器提供多元算力资源调度及任务调度的能力,面向机器学习深度学习、生物信息学、基因组学及其他大数据应用场景提供完整的应用调度特性。 CCE支持CPU资源调度、GPU/NPU异构资源调度、在离线作业混合部署、CPU Burst弹性限流等调度策略,您可以根据业务特征设置调度策

    来自:帮助中心

    查看更多 →

  • GPU驱动故障

    GPU驱动故障 G系列弹性 云服务器 GPU驱动故障 GPU驱动异常怎么办? GPU驱动不可用 GPU设备显示异常 T4 GPU设备显示异常 GPU实例启动异常,查看系统日志发现NVIDIA驱动空指针访问怎么办?

    来自:帮助中心

    查看更多 →

  • 规格清单(x86)

    8xlarge.4 32 128 13/8 60 8 KVM GPU加速型 各规格详细介绍请参见GPU加速型。 表54 GPU加速实例总览 类别 实例 GPU显卡 单卡Cuda Core数量 单卡GPU性能 使用场景 备注 图形加速型 G6v NVIDIA T4(vGPU虚拟化) 2560

    来自:帮助中心

    查看更多 →

  • 什么是图像识别

    务效率。 媒资图像标签 基于深度学习技术,准确识别图像中的视觉内容,提供多种物体、场景和概念标签,具备目标检测和属性识别等能力帮助客户准确识别和理解图像内容。主要面向媒资素材管理、内容推荐、广告营销等领域。 图1 媒资图像标签示例图 名人识别 利用深度神经网络模型对图片内容进行检

    来自:帮助中心

    查看更多 →

  • CPU管理策略

    在侧边栏滑出的“配置管理”窗口中,修改kubelet组件的CPU管理策略配置(cpu-manager-policy)参数值,选择static。 单击“确定”,完成配置操作。 为Pod设置独占CPU Pod设置独占CPU(即CPU绑核)有如下几点要求: 节点上开启静态(static)CPU管理策略,具体方法请参见为

    来自:帮助中心

    查看更多 →

  • GPU设备检查

    GPU设备检查 功能 检查节点是否存在gpu设备,gpu驱动是否安装且运行正常。 语法 edgectl check gpu 参数说明 无 使用示例 检查节点GPU设备: edgectl check gpu 检查成功返回结果: +-----------------------+ |

    来自:帮助中心

    查看更多 →

  • GPU视图

    计算公式:节点上容器显存使用总量/节点上显存总量 GPU卡-显存使用量 字节 显卡上容器显存使用总量 GPU卡-算力使用率 百分比 每张GPU卡的算力使用率 计算公式:显卡上容器算力使用总量/显卡的算力总量 GPU卡-温度 摄氏度 每张GPU卡的温度 GPU-显存频率 赫兹 每张GPU卡的显存频率 GPU卡-PCle带宽

    来自:帮助中心

    查看更多 →

  • ModelArts与DLS服务的区别?

    ModelArts与DLS服务的区别? 深度学习服务(DLS)是基于华为云强大高性能计算提供的一站式深度学习平台服务,内置大量优化的网络模型,以便捷、高效的方式帮助用户轻松使用深度学习技术,通过灵活调度按需服务化方式提供模型训练与评估。 但是,DLS服务仅提供深度学习技术,而ModelA

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了