能源行业解决方案

结合行业需求特点和华为丰富的云服务,为能源行业客户提供端到端的云解决方案,帮助客户快速实现业务云化部署,满足业务快速发展的需求,提升企业竞争力

相关搜索推荐:
专业咨询服务 ∙ 助您上云无忧
专属顾问会在1个工作日内联系您
 请填写联系人
 请填写真实电话
提交

    深度学习 电力负荷预测 更多内容
  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现垃圾分类

    在服务详情页,单击选择“预测”页签。 图4 上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定

    来自:帮助中心

    查看更多 →

  • 发布预测类数据集

    数据发布”,单击界面右上角“创建发布数据集”。 在“创建发布数据集”页面,选择“预测”类型的数据集。并根据训练任务场景选择“时序”、“回归分类”类型的数据。 图2 创建预测类数据集发布任务 当前预测类数据集仅支持发布默认格式,选择好数据集的发布格式后,单击“下一步”。 设置数据集

    来自:帮助中心

    查看更多 →

  • 执行批量预测作业

    在“联邦预测”页面批量预测Tab页,查找待执行的作业,单击“发起预测”,在系统弹窗中填写“分类阈值”,勾选数据集发起联邦预测。 如果在创建联邦预测作业 步骤4中勾选的模型不包含标签方特征,联邦预测支持只勾选己方数据集发起单方预测。 图1 发起预测 图2 勾选数据集 在“联邦预测”页面批量预测Tab

    来自:帮助中心

    查看更多 →

  • 执行实时预测作业

    执行实时预测作业 执行实时预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面实时预测Tab页,单击“模型部署”,开始部署模型。 图1 模型部署 模型部署完成后,单击“发起预测”,在系统弹窗中填写要预测的“

    来自:帮助中心

    查看更多 →

  • 预测API的域名停用公告

    预测API的 域名 停用公告 华为云ModelArts将于2024年12月31日 00:00(北京时间)逐步停用预测API的域名huaweicloudapis.com,后续预测API切换使用新域名modelarts-infer.com。 停用范围 影响区域:华为云全部Region 停用影响

    来自:帮助中心

    查看更多 →

  • 最新动态

    计算节点管理 2021年7月 序号 功能名称 功能描述 阶段 相关文档 1 联邦预测 新增支持联邦预测作业。联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 公测 联邦预测作业 2 联邦分析新增union all语法 安全多方计算MPC扩展语法支持union

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 获取纵向联邦作业详情

    特征选择,MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate String 纵向联邦算法学习率,最大长度16 label_dataset String 标签数据集,最大长度100 label_agent

    来自:帮助中心

    查看更多 →

  • 保存纵向联邦作业

    MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate 否 String 纵向联邦算法学习率,最大长度16 label_dataset 否 String 标签数据集,最大长度100 label_agent

    来自:帮助中心

    查看更多 →

  • 训练物体检测模型

    被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 使用自动学习实现零代码AI开发

    使用自动学习实现零代码AI开发 自动学习简介 使用自动学习实现图像分类 使用自动学习实现物体检测 使用自动学习实现预测分析 使用自动学习实现声音分类 使用自动学习实现文本分类 使用窍门

    来自:帮助中心

    查看更多 →

  • 分页查询智能任务列表

    19:基于gaussianblur的数据增强与原图预测结果不一致。 20:基于fliplr的数据增强与原图预测结果不一致。 21:基于crop的数据增强与原图预测结果不一致。 22:基于flipud的数据增强与原图预测结果不一致。 23:基于scale的数据增强与原图预测结果不一致。 24:基于tra

    来自:帮助中心

    查看更多 →

  • 大数据分析

    游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,小地图等)输入状态信息(Learner)。 根据策略模型输出预测的动作指令(Policy)。

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现垃圾分类

    在服务详情页,单击选择“预测”页签。 图4 上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • HCIA-AI

    200USD 考试内容 HCIA-AI V3.0考试包含人工智能基础知识、机器学习深度学习、昇腾AI体系、华为AI全栈全场景战略知识等内容。 知识点 人工智能概览 10% 机器学习概览 20% 深度学习概览 20% 业界主流开发框架 12% 华为AI开发框架MindSpore 8%

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    大模型开发基本流程介绍 大模型(Large Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于 自然语言处理 (NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了