AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度强化学习+量化 更多内容
  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,若指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考步骤六 启

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)

    来自:帮助中心

    查看更多 →

  • 推理模型量化

    推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910)

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,若指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,若指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考步骤六 启

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化

    --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考部署推理

    来自:帮助中心

    查看更多 →

  • 内容数据量化

    内容数据量化 SOW中搬迁资源量以及工作内容描述补充说明内容需数据量化。 父主题: SOW(项目工作说明书)注意事项

    来自:帮助中心

    查看更多 →

  • 场景介绍

    接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入

    来自:帮助中心

    查看更多 →

  • 向量化执行引擎

    量化执行引擎 GS_232010001 错误码: [SonicHashJoin]: The memory of the current statement is not controlled. 解决方案:请设置hashjoin_spill_strategy为0-2。 level:

    来自:帮助中心

    查看更多 →

  • 查询轻量化任务状态

    查询轻量化任务状态 功能介绍 查询轻量化任务状态 图纸上传完成后,即可调用该接口获取图纸轻量化转换状态,该接口可能需要调用多次,直到返回的数据轻量化状态为SUCCESS或FAILED,即代表轻量化转换结束。 如果轻量化状态为SUCCESS,则代表图纸轻量化转换成功,此时可通过li

    来自:帮助中心

    查看更多 →

  • 轻量化模型转换API

    量化模型转换API 开发概述 上传图纸文件 查询轻量化任务状态 下载轻量化文件 父主题: IPDCenter基础服务API

    来自:帮助中心

    查看更多 →

  • 场景介绍

    接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入

    来自:帮助中心

    查看更多 →

  • Hive是否支持向量化查询

    Hive是否支持向量化查询 问题 当设置向量化参数hive.vectorized.execution.enabled=true时,为什么执行hive on Tez/Mapreduce/Spark时会偶现一些空指针或类型转化异常? 回答 当前 MRS Hive不支持向量化执行。 向量化执行有很

    来自:帮助中心

    查看更多 →

  • 大数据分析

    均涌现出超高水平AI。人工智能应用在其中起到了不可替代的作用。 游戏智能体通常采用深度强化学习方法,从0开始,通过与环境的交互和试错,学会观察世界、执行动作、合作与竞争策略。每个AI智能体是一个深度神经网络模型,主要包含如下步骤: 通过GPU分析场景特征(自己,视野内队友,敌人,

    来自:帮助中心

    查看更多 →

  • 场景介绍

    接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 RM奖励模型(Reward Model):是强化学习过程中一个关键的组成部分。它的主要任务是根据给定的输入

    来自:帮助中心

    查看更多 →

  • Hive是否支持向量化查询

    Hive是否支持向量化查询 问题 当设置向量化参数hive.vectorized.execution.enabled=true时,为什么执行hive on Tez/Mapreduce/Spark时会偶现一些空指针或类型转化异常? 回答 当前Hive不支持向量化执行。 向量化执行有很多社

    来自:帮助中心

    查看更多 →

  • Delete轻量化删除表数据

    Delete轻量化删除表数据 本章节主要介绍轻量化delete删除表数据的SQL基本语法和使用说明。 本章节仅适用于MRS 3.3.0及之后版本。 基本语法 DELETE FROM [db.]table [ON CLUSTER cluster] WHERE expr 使用示例 建表:

    来自:帮助中心

    查看更多 →

  • 恢复归档或深度归档存储对象

    用户授权。 注意事项 归档存储或深度归档存储的对象正在恢复的过程中,不支持修改恢复方式,不允许暂停或删除恢复任务。 数据恢复后,会产生一个标准存储类别的对象副本,即对象同时存在标准存储类别的对象副本和归档存储或深度归档存储类别的对象。归档存储或深度归档存储对象恢复完成时,对象的恢

    来自:帮助中心

    查看更多 →

  • 恢复归档或深度归档存储对象

    恢复归档或深度归档存储对象 功能介绍 如果要获取归档存储或深度归档对象的内容,需要先将对象恢复,然后再执行下载数据的操作。对象恢复后,会产生一个标准存储类型的对象副本,也就是说会同时存在标准存储类型的对象副本和归档或深度归档存储类型的对象,在恢复对象的保存时间到期后标准存储类型的对象副本会自动删除。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化工具转换权重

    使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化量化方法:W4A16

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了