计算图 深度学习 更多内容
  • 方案概述

    。 智慧教室解决方案整体业务架构如下所示: 1 业务架构 智慧教室解决方案部署架构如下所示: 2 部署架构 部署架构说明: 使用华为云CDN,用与加速全站资源访问,比如教师课件、视频、片等 使用华为云VPC,用于生产环境与外界隔离 使用漏洞扫描VSS及态势感知SA,用于保证代码和服务的安全性

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 创建共享资源池

    ,建议您使用云容器实例环境,可以省去对资源的关注。 创建步骤 开始执行批量计算前,请先创建资源池环境。 登录BCE控制台,在左侧导航栏单击“资源池管理”。 在“共享资源池”页签,单击“创建共享资源池”。 1 创建共享资源池 在“创建共享资源池”页面中,填写基础信息,并选择资源池所在的命名空间,具体参数如表1所示。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    叠加在模型的2范数之上,用来对模型值进行限制防止过拟合。默认0。 正则损失计算方式 正则损失计算当前有两种方式。 full:指针对全量参数计算。 batch:则仅针对当前批数据中出现的参数计算 说明: batch模式计算速度快于full模式。 重新训练 对第一次训练无影响,仅影响任务重跑。

    来自:帮助中心

    查看更多 →

  • 应用场景

    在线商城 智能审核商家/用户上传像,高效识别并预警不合规片,防止涉黄、涉暴类像发布,降低人工审核成本和业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:单张像识别速度小于0.1秒。 网站论坛 不合规片的识别和处理是用户原创内容(

    来自:帮助中心

    查看更多 →

  • 什么是Fabric

    源隔离、可靠容错。 多语义缓存加速 Fabric提供跨引擎、多模态、多语义加速,例如数据缓存、模型缓存、CheckPoint缓存。 1 产品架构 访问方式 Fabric提供了多种访问方式。 当前提供了Web化的服务管理平台,即管理控制台和基于HTTPS请求的API(Application

    来自:帮助中心

    查看更多 →

  • 与其他云服务的关系

    见《统一身份认证服务文档》。 ModelArts ModelArts是面向AI开发者的一站式开发平台,排序策略使用Modelarts的深度学习计算能力训练得到排序模型。ModelArts的更多信息请参见《ModelArts服务文档》。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TICS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    ModelArts自动学习,为入门级用户提供AI零代码解决方案 支持片分类、物体检测、预测分析、声音分类场景 自动执行模型开发、训练、调优和推理机器学习的端到端过程 根据最终部署环境和开发者需求的推理速度,自动调优并生成满足要求的模型 ModelArts自动学习,为资深级用户提供模板化开发能力

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    Prop,可以调整学习率。取值范围:(0,1)。 权重衰减系数 通过在损失函数中加入与模型权重大小相关的惩罚项,鼓励模型保持较小的权重,防止过拟合或模型过于复杂,取值需≥0。 学习学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。

    来自:帮助中心

    查看更多 →

  • 方案概述

    、模型微调与部署等核心能力,针对不同行业的需求,为客户提供从模型设计、训练到部署的一站式服务,助力企业快速落地AI应用。 业务架构 1 业务架构 行业大模型适配服务: 昇腾模型与应用开发支持:提供MindSpore 、Pytorch AI框架相关API的使用指导,支持客户基于

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于TensorFlow、PyTorch、MXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公共组件,可用

    来自:帮助中心

    查看更多 →

  • 什么是自动学习?

    什么是自动学习? 自动学习功能可以根据标注的数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。 自动学习功能主要面向无编码能力的用户,其可以通过页面的标注操作,一站式训练、部署,完成AI模型构建。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • 计算公式

    计算公式 简介 字面量 操作符 函数 其他 父主题: 分析任务定义

    来自:帮助中心

    查看更多 →

  • 相邻消息计算

    相邻消息计算 算子简介 名称:相邻消息计算 功能说明:基于前一消息和当前消息,按照表达式进行数值计算计算的结果赋值给当前输入消息的属性。 举例:消息中有上报机器的产品总产量,但没有相对上一个上报周期的增量产量。通过相邻消息计算算子,可以用本消息中的产品总量减去上一个消息中的产品

    来自:帮助中心

    查看更多 →

  • 数学计算函数

    数学计算函数 本文介绍数学计算函数的语法规则,包括参数解释、函数示例等。 函数列表 表1 数学计算函数 函数 描述 round函数 用于对x进行四舍五入。如果n存在,则保留n位小数;如果n不存在,则对x进行四舍五入取整数。 round函数 用于对x进行四舍五入。如果n存在,则保留

    来自:帮助中心

    查看更多 →

  • 点位计算

    点位计算 业务流程 点位计算业务流程如1 流程所示,先进行点位缩放得到真实值,再用真实值进行点位清洗得到上报值。 1 流程 点位缩放 对数采数据做规整,减少应用对数据处理和适配的工作量,如从PLC采集上来的原始数据,需要经过计算后才能表达真实含义。具体操作步骤请参见点位缩放。

    来自:帮助中心

    查看更多 →

  • 大数据分析

    )同时执行更多的策略,缩短模拟时间。而凭借竞享实例的强劲性能(全系C类型)该引擎训练一天相当于人类玩家打10万年。 1 人工智能应用架构 Learner:学习集群,一般是多个GPU显卡组成训练集群 Actor:采用竞享实例提供CPU,每个线程作为一个AI玩家,用于测试策略的执行效果

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了