AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    单应性矩阵 深度学习 更多内容
  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和 语音识别 等不同领域, DLI 服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 深度学习模型预测

    深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano

    来自:帮助中心

    查看更多 →

  • 颜色矩阵

    颜色矩阵 图1 颜色矩阵 颜色值矩阵:下表中,各颜色值同上述示意图一一对。 表1 颜色矩阵 颜色值 FF000000 FF595959 FFA5A5A5 FFFFFFFF FF8E2323 FFB20000 FFDB7070 FFFF4C4C FF8E5923 FFB25900

    来自:帮助中心

    查看更多 →

  • 矩阵量表

    矩阵量表 矩阵量表用于形象地评估对事物的喜好程度。 在表单开发页面,从“数据组件”中,拖拽“矩阵量表”组件至表单设计区域,如图1。 图1 矩阵量表 如图2所示,使用矩阵量表对车辆进行评分。 图2 矩阵量表配置示例 显示名称:该组件在页面呈现给用户的名称,可以设置为中文,也可以设置为英文。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • 获取任务权限矩阵

    获取任务权限矩阵 功能介绍 获取任务权限矩阵 调用方法 请参见如何调用API。 URI GET /v1/job/permission 表1 Query参数 参数 是否必选 参数类型 描述 project_id 是 String CodeArts项目ID,32位数字、小写字母组合。

    来自:帮助中心

    查看更多 →

  • DLI SDK功能矩阵

    DLI SDK功能矩阵 SDK开发指南指导您如何安装和配置开发环境、如何通过调用DLI SDK提供的接口函数进行二次开发。 Java、Python SDK功能矩阵请参见表1 表1 SDK功能矩阵 语言 功能 内容 Java OBS授权 介绍将OBS桶的操作权限授权给DLI的Java

    来自:帮助中心

    查看更多 →

  • 方案概述

    全自动化的装修设计,可实现全屋SKU可视化替换,提升个性化精装房售卖转化率30%; 方案设计定稿后,系统可自动对材料算量拆,实现设计与生产的无缝对接,避免人工信息传递错误。实时派,可有效降低制造商的原材料备货。 方案优势 核心技术1:海量家居家装方案,训练打磨AI装修算法 户型建模、识别

    来自:帮助中心

    查看更多 →

  • SDK功能矩阵

    createSignedUrl(python、go)createTemporarySignature(java) √ √ √ √ √ √ 计算POST表鉴权参数 createPostSignature、createBrowserBasedSignature √ √ × × √ √ 支持Security

    来自:帮助中心

    查看更多 →

  • 修改主机集群权限矩阵

    修改主机集群权限矩阵 功能介绍 根据主机集群id修改主机集群权限矩阵。 调用方法 请参见如何调用API。 URI PUT /v2/host-groups/{group_id}/permissions 表1 路径参数 参数 是否必选 参数类型 描述 group_id 是 String

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 深度诊断ECS

    诊断异常项(示例) 深度诊断结论 诊断项ID 诊断项名称 诊断结论 guestos.cpu.high_total_usage 总CPU占用率过高 实例整体CPU占用率已超过80%。 guestos.cpu.high_process_usage CPU使用率过高的进程 进程CPU占用率超过整机的50%。

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 查询主机集群权限矩阵

    查询主机集群权限矩阵 功能介绍 根据主机集群id查询主机集群权限矩阵。 调用方法 请参见如何调用API。 URI GET /v2/host-groups/{group_id}/permissions 表1 路径参数 参数 是否必选 参数类型 描述 group_id 是 String

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    敛的速度可能会非常慢。当batch_size减小时,学习率也相应地线性减小。预训练时,默认值为:0.00001,范围为[0, 0.001] 学习率调整策略 用于选择学习率调度器的类型。学习率调度器可以在训练过程中动态地调整学习率,以改善模型的训练效果。目前支持CosineDecayLR调度器。

    来自:帮助中心

    查看更多 →

  • 功能介绍

    多种样本半自动标注工具 支持样本平衡综合分析,便于用户直观的了解数据集中不同类别样本的分布情况,判断样本集的分布平衡,并可在组织内共享数据集。 图10 数据均衡分析 图11 共享样本数据库管理 全流程可视化自主训练,用户可选择网络结构、数据集利用云端算力进行自动学习,也可以利用noteb

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 方案概述

    风险 缺乏安全事件实时响应能力,系统防御能力脆弱 应用运维周期已过,存在未修复的漏洞 应用系统的复杂,导致安全更新滞后 随着远程办公的发展,应用系统攻击面也随之扩大,业务持续风险增加 方案架构 图1 中云网安AI防护者方案架构 图2 中云网安AI防护者部署架构 方案架构说明:

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了