AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    半监督算法 深度学习 更多内容
  • 功能特性

    模型、无监督学习模型、有监督学习模型实现对风险口令、凭证泄露、Token利用、异常委托、异地登录、未知威胁、暴力破解七大IAM高危场景进行智能检测。通过SVM、随机森林、神经网络等算法实现对隧道 域名 、DGA域名以及异常行为的智能检测。 AI引擎检测保持模型对真实数据的学习,保证数

    来自:帮助中心

    查看更多 →

  • 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型

    来自:帮助中心

    查看更多 →

  • 数据处理场景介绍

    数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 数据生成应用相关深度学习模型,通过对原数据集进行学习,训练生成新的数据集的方式增加数据量。 数据域迁移应用相关深度学习模型,通过对原域和目标域数据集进行学习,训练生成原域向目标域迁移的数据。 父主题: 处理ModelArts数据集中的数据

    来自:帮助中心

    查看更多 →

  • 什么是医疗智能体

    等技术加速计算过程。 支持十亿节点、百亿边的超大规模图数据库查询,提供适用于基因和生物网络数据的图深度学习算法。 拥有基于基因组数据自动深度学习的技术框架AutoGenome,深度融合人工智能技术,产生更加便捷、快速、准确、可解释的医疗智能模型,加速医疗大健康行业的研究工作。 成

    来自:帮助中心

    查看更多 →

  • 迁移学习

    单击图标,运行“评估迁移数据”代码框内容。 评估迁移算法 如果评估迁移数据的结果为当前数据适合迁移,可以使用评估迁移算法评估当前数据适合采用哪种算法进行迁移。 单击界面右上角的图标,选择“迁移学习 > 特征迁移 > 迁移评估 > 评估迁移算法”。界面新增“评估迁移算法”内容。 对应参数说明,如表4所示。

    来自:帮助中心

    查看更多 →

  • 学习项目

    可见范围内的学员在学员端可看见此项目并可以进行学习学习数据可在学习项目列表【数据】-【自学记录】查看。 学习设置: 防作弊设置项可以单个项目进行单独设置,不再根据平台统一设置进行控制。 文档学习按浏览时长计算,时长最大计为:每页浏览时长*文档页数;文档学习按浏览页数计算,不计入学习时长。 更多设置:添加协同人

    来自:帮助中心

    查看更多 →

  • 学习目标

    学习目标 掌握座席侧的前端页面开发设计。 父主题: 开发指南

    来自:帮助中心

    查看更多 →

  • 排序策略

    径下。该路径不能包含中文。 深度网络因子分解机-DeepFM 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。单击查看深度网络因子分解机详细信息。 表4 深度网络因子分解机参数说明 参数名称

    来自:帮助中心

    查看更多 →

  • 应用场景

    准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:视频直播响应速度小于0.1秒。 在线商城 智能审核商家/用户上传图像,高效识别并预警不合规图片,防止涉黄、涉暴类图像发布,降低人工审核成本和业务违规风险。 场景优势如下: 准确率高:基于改进的深度学习算法,检测准确率高。 响应速度快:单张图像识别速度小于0

    来自:帮助中心

    查看更多 →

  • 无监督领域知识数据量无法支持增量预训练,如何进行模型学习

    让模型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如: 表1 采用规则将无监督数据构建为有监督数据的常用方法 规则场景 说明 文本生成:根据标题、关键词、简介生成段落。 若您的无监督文档中含标

    来自:帮助中心

    查看更多 →

  • 算法

    KcoreSample K核算法 KhopSample K跳算法 ShortestPathSample 最短路径算法 AllShortestPathsSample 全最短路径算法 FilteredShortestPathSample 带一般过滤条件最短路径 SsspSample 单源最短路径算法 Sh

    来自:帮助中心

    查看更多 →

  • 执行作业

    常规配置参数 算法类型 参数名 参数描述 XGBoost 学习率 控制权重更新的幅度,以及训练的速度和精度。取值范围为0~1的小数。 树数量 定义XGBoost算法中决策树的数量,一个样本的预测值是多棵树预测值的加权和。取值范围为1~50的整数。 树深度 定义每棵决策树的深度,根节点为第一层。取值范围为1~10的整数。

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 欠拟合的解决方法有哪些?

    调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。 欠拟合一般是因为模型的学习能力不足,一味地增加数据,训练效果并不明显。

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • 算法

    算法 代码样例文件路径 样例方法名 对应的API com.huawei.ges.graph.sdk.v1.examples.persistence testShortestPath 最短路径算法 testShortestPathOfVertexSets 点集最短路径算法 test

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • AI开发基本概念

    AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。

    来自:帮助中心

    查看更多 →

  • 时序数据标注介绍

    数据标注对于KPI异常检测非常重要,可以有效提升监督学习训练过程中KPI异常检测的准确率,在无监督学习中对模型做验证评估。 监督学习:使用标注工具对原始数据进行标注,并将标注数据用于训练。用户基于训练结果确认并更新数据标注,将标注数据重新用于训练,提升KPI检测准确率。 无监督学习:使用标注工具对原始数据

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    纵向联邦作业XGBoost算法只支持两方参与训练。 训练作业必须选择一个当前计算节点发布的数据集。 作业创建者的数据集必须含有特征。 创建纵向联邦学习作业 纵向联邦学习作业在本地运行,目前支持XGBoost算法、逻辑回归LR算法和FiBiNET算法。 纵向联邦学习分为五个步骤:数据选择

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了