弹性云服务器 ECS

 

弹性云服务器(Elastic Cloud Server)是一种可随时自助获取、可弹性伸缩的云服务器,帮助用户打造可靠、安全、灵活、高效的应用环境,确保服务持久稳定运行,提升运维效率

 
 

    ftp服务器的原理 更多内容
  • Flink基本原理

    精确一次语义:FlinkCheckpoint和故障恢复能力保证了任务在故障发生前后应用状态一致性,为某些特定存储支持了事务型输出功能,即使在发生故障情况下,也能够保证精确一次输出。 丰富时间语义 时间是流处理应用重要组成部分,对于实时流处理应用来说,基于时间语义窗口聚合、检

    来自:帮助中心

    查看更多 →

  • YARN基本原理

    Master负责协调来自ResourceManager资源,并通过NodeManager监视容器执行和资源使用(CPU、内存等资源分配)。 NodeManager管理一个YARN集群中每个节点。NodeManager提供针对集群中每个节点服务,从监督对一个容器终生管理到监视资源和跟踪节点健康

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM 将根据源端字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时字段类型映射 CDM在 数据仓库 服务(Data Warehouse Service,简称DWS)中自动建表时,DWS表与源表字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • FederatedHPA工作原理

    当前Pod数与期望Pod数计算方法如下: 当前Pod数 = 所有集群中状态为ReadyPod数量 在计算期望Pod数时,HPA Controller会选择最近5分钟内计算所得Pod数最大值,以避免之前自动扩缩操作还未完成,就直接执行新扩缩情况。 期望Pod数 = 当前Pod数

    来自:帮助中心

    查看更多 →

  • 只读落后自愈技术原理

    只读节点读取redo日志进行缓存数据更新,对应redo日志lsn,称为visible lsn,表示只读节点能读取数据页最大lsn。对于主节点来说,每更新或者插入一条数据产生最新redo日志lsn为flush_to_disk_lsn,表示主节点能访问数据页最大lsn。只读延迟其实就是只读节点visible

    来自:帮助中心

    查看更多 →

  • 配置MRS集群监控指标数据转储

    说明文件对应第2列,即5分钟指标ID即可找到对应指标说明。 部分字段说明: 实时指标ID:指标的采集周期为30s/60s指标ID,一个独立指标项只可能存在30s或者60s实时指标项。 5分钟指标ID:指标对应5分钟(300s)指标ID。 指标采集周期(秒):主要是针

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 HPA工作原理 HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩控制器,HPA周期性检查Pod度量数据,计算满足HPA资源所配置目标数值所需副本数量,进而调整目标资源(如Deployment)replicas字段。

    来自:帮助中心

    查看更多 →

  • HBase基本原理

    CF下一个标签,可以在写入数据时任意添加,因此CF支持动态扩展,无需预先定义Column数量和类型。HBase中表列非常稀疏,不同行个数和类型都可以不同。此外,每个CF都有独立生存周期(TTL)。可以只对行上锁,对行操作始终是原始。 Column 与传统数据库

    来自:帮助中心

    查看更多 →

  • Hive基本原理

    L、Derby。Hive中元数据包括表名字,表列和分区及其属性,表属性(是否为外部表等),表数据所在目录等。 Hive结构 Hive为单实例服务进程,提供服务原理是将HQL编译解析成相应MapReduce或者HDFS任务,图1为Hive结构概图。 图1 Hive结构

    来自:帮助中心

    查看更多 →

  • Kafka基本原理

    Kafka基本原理 Kafka是一个分布式、分区、多副本消息发布-订阅系统,它提供了类似于JMS特性,但在设计上完全不同,它具有消息持久化、高吞吐、分布式、多客户端支持、实时等特性,适用于离线和在线消息消费,如常规消息收集、网站活性跟踪、聚合统计系统运营数据(监控数据

    来自:帮助中心

    查看更多 →

  • HetuEngine基本原理

    用于Hadoop集群( MRS Hive、Hudi数据交互式快速查询场景。 HetuEngine跨源功能简介 出于管理和信息收集需要,企业内部会存储海量数据,包括数目众多各种数据库、数据仓库等,此时会面临数据源种类繁多、数据集结构化混合、相关数据存放分散等困境,导致跨源查询开发成本高,跨源复杂查询耗时长。

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM将根据源端字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时字段类型映射 CDM在数据仓库服务(Data Warehouse Service,简称DWS)中自动建表时,DWS表与源表字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    创建AHPA策略 HPA工作原理 HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩控制器,HPA周期性检查Pod度量数据,计算满足HPA资源所配置目标数值所需副本数量,进而调整目标资源(如Deployment)replicas字段。 想

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    1标准UTC时间格式:YYYYMMDDTHHMMSSZ。如果API发布到非RELEASE环境时,需要增加自定义环境名称。 客户端须注意本地时间与时钟 服务器 同步,避免请求消息头X-Sdk-Date值出现较大误差。 ROMA Connect除了校验X-Sdk-Date时间格

    来自:帮助中心

    查看更多 →

  • 产品架构和功能原理

    ,保证数据完整性和一致性。 第三阶段:增量数据迁移。全量任务结束后,增量迁移任务启动,此时会从全量开始增量数据持续解析转换和回放,直到追平当前增量数据。 第四阶段:为了防止触发器、事件在迁移阶段对于数据操作,在结束任务阶段再迁移触发器、事件。 全量数据迁移底层模块主要原理:

    来自:帮助中心

    查看更多 →

  • GaussDB(for MySQL)备份原理

    Store节点存储数据信息。 图1 备份原理 如图1所示, GaussDB (for MySQL)实例备份是由计算层和存储层各自完成。 计算层主节点读取存储层Common Log节点日志信息,通过主节点备份到对象存储服务(OBS)中。 计算层主节点向存储层Slice Store节点发送命令备份数据信息,通过Slice

    来自:帮助中心

    查看更多 →

  • APP认证工作原理

    API网关收到请求后,执行1~3,计算签名。 将3中生成签名与5中生成签名进行比较,如果签名匹配,则处理请求,否则将拒绝请求。 APP签名仅支持Body体12M及以下请求签名。 步骤1:构造规范请求 使用APP方式进行签名与认证,首先需要规范请求内容,然后再进行签名。客户端与API网关使用相同请求规范,可以

    来自:帮助中心

    查看更多 →

  • HDFS基本原理

    HDFS基本原理 HDFS是Hadoop分布式文件系统(Hadoop Distributed File System),实现大规模数据可靠分布式读写。HDFS针对使用场景是数据读写具有“一次写,多次读”特征,而数据“写”操作是顺序写,也就是在文件创建时写入或者在现有文件

    来自:帮助中心

    查看更多 →

  • MemArtsCC基本原理

    常需要等待数据而拖慢任务执行。因此,计算侧需要一个高速缓存层来消除计算集群和OBS之间数据访问鸿沟。为了解决这个问题,提出MemArts分布式客户端缓存,MemArts部署在计算侧VM中,通过智能预取OBS上数据来加速计算任务执行。 图1 MemArtsCC结构图 表1

    来自:帮助中心

    查看更多 →

  • Doris基本原理

    和被更新数据进行标记删除,同时将新数据写入新文件。在查询时,所有被标记删除数据都会在文件级别被过滤,读取出数据就都是最新数据,消除了读时合并中数据聚合过程,并且能够在很多情况下支持多种谓词下推。因此在许多场景都能带来比较大性能提升,尤其是在有聚合查询情况下。 Duplicate模型

    来自:帮助中心

    查看更多 →

  • 异地双活原理介绍

    Cassandra数据库可以同时为用户业务提供服务。当一个数据中心发生故障而另一个数据中心正常运行时,可以通过业务层调度将故障区域业务切换到正常区域,因为配置了异地双活,您可以在数据中心运行正常区域继续处理数据。在业务不中断前提下实现故障场景下业务快速恢复,保证了故障场景下业务连续性。 配置异地双活功能的具体操作请参见搭建双活关系。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了