GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    华为云服务器gpu 更多内容
  • GPU设备显示异常

    是,该驱动版本与镜像可能存在兼容性问题,建议更换驱动版本,操作指导,请参考安装GPU驱动。 否,请执行下一步。 请尝试重启 云服务器 ,再执行nvidia-smi查看GPU使用情况,确认是否正常。 如果问题依然存在,请联系客服。 父主题: GPU驱动故障

    来自:帮助中心

    查看更多 →

  • GPU加速型

    RID驱动。 GPU 弹性云服务器 因通用算力和异构算力差异大,仅支持变更规格至同类型规格内的细分规格。 GPU弹性云 服务器 不支持热迁移。 计算加速型P2vs 概述 P2vs型弹性云服务器采用NVIDIA Tesla V100 GPU (32G显存),在提供云服务器灵活性的同时,

    来自:帮助中心

    查看更多 →

  • 监控GPU资源指标

    GPUGPU时钟频率 cce_gpu_memory_clock GPUGPU显存频率 cce_gpu_graphics_clock GPUGPU图形处理器频率 cce_gpu_video_clock GPUGPU视频处理器频率 物理状态数据 cce_gpu_temperature

    来自:帮助中心

    查看更多 →

  • 支持GPU监控的环境约束

    执行以下命令,查看安装结果。 lspci -d 10de: 图1 安装结果 GPU指标采集需要依赖以下驱动文件,请检查环境中对应的驱动文件是否存在。如果驱动未安装,可参见(推荐)GPU加速型实例自动安装GPU驱动(Linux)。 Linux驱动文件 nvmlUbuntuNvidiaLibraryPath

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Linux)

    (推荐)自动安装GPU加速型E CS GPU驱动(Linux) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Linux实例上通过脚本自动安装GPU驱动。 使用须知 本操作仅支持Linux操作系统。

    来自:帮助中心

    查看更多 →

  • GPU虚拟化

    GPU虚拟化 GPU虚拟化概述 准备GPU虚拟化资源 使用GPU虚拟化 兼容Kubernetes默认GPU调度模式 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • 使用CES监控Lite Server资源

    gpu_utilization gpu使用率。 该GPU的算力使用率。 % instance_id,gpu memory_utilization 显存使用率。 该GPU的显存使用率。 % instance_id,gpu gpu_performance gpu性能状态。 该GPU的性能状态。 - instance_id,gpu

    来自:帮助中心

    查看更多 →

  • G系列弹性云服务器GPU驱动故障

    G系列弹性云服务器GPU驱动故障 问题描述 在Windows系统的G系列弹性云服务器中,无法打开NVIDIA 控制面板,GPU驱动无法使用或GPU驱动显示异常。 可能原因 GPU驱动状态异常。 处理方法 打开Windows设备管理器,在显示适配器中查看GPU驱动状态。 GPU驱动显

    来自:帮助中心

    查看更多 →

  • SDK接口参考

    用户通过该接口配置华为云用户名及密码,客户端根据该信息访问华为云IAM 获取Token 后再连接至VR云渲游平台进行鉴权,以下简称“A类 CVRParameter构造函数”。 【请求参数】 userDomain:华为云租户名 userName:华为云用户名 password:华为云用户密码 projectName:项目名称

    来自:帮助中心

    查看更多 →

  • 资源和成本规划

    具体请参考华为云官网价格,实际以收费账单为准: 表1 资源和成本规划(按需计费) 华为云服务 配置示例 每月预估花费 弹性云服务器ECS 按需计费:16.49元/小时 区域:华北-北京四 计费模式:按需计费 规格: GPU加速型 P2v | 8核 | 64GB | 加速卡:1 *

    来自:帮助中心

    查看更多 →

  • 方案概述

    针对AI训练场景中面临的问题,华为云提供了基于对象存储服务OBS+高性能文件服务SFS Turbo的AI云存储解决方案,如图所示,华为云高性能文件服务SFS Turbo HPC型支持和OBS数据联动,您可以通过SFS Turbo HPC型文件系统来加速对OBS对象存储中的数据访问,

    来自:帮助中心

    查看更多 →

  • 方案概述

    针对AI训练场景中面临的问题,华为云提供了基于对象存储服务OBS+高性能文件服务SFS Turbo的AI云存储解决方案,如图所示,华为云高性能文件服务SFS Turbo HPC型支持和OBS数据联动,您可以通过SFS Turbo HPC型文件系统来加速对OBS对象存储中的数据访问,

    来自:帮助中心

    查看更多 →

  • GPU驱动不可用

    方法一:重新启动,选择安装GPU驱动时的内核版本,即可使用GPU驱动。 在云服务器操作列下单击“远程登录 > 立即登录”。 单击远程登录操作面板上方的“发送CtrlAltDel”按钮,重启虚拟机。 然后快速刷新页面,按上下键,阻止系统继续启动,选择安装GPU驱动时的内核版本进入系统

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Windows)

    (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Windows实例上通过脚本自动安装GPU驱动。 使用须知 如果GPU加速型实例已安装G

    来自:帮助中心

    查看更多 →

  • GPU裸金属服务器无法Ping通如何解决

    GPU裸金属服务器无法Ping通如何解决 问题现象 在华为云使用GPU裸金属服务器时, 服务器绑定EIP(华为云弹性IP服务)后,出现无法ping通弹性公网IP现象。 原因分析 查看当前GPU裸金属服务器的安全组的入方向规则的配置,发现仅开通了TCP协议的22端口。 ping命令

    来自:帮助中心

    查看更多 →

  • GPU虚拟化

    GPU虚拟化 GPU虚拟化概述 准备GPU虚拟化资源 创建GPU虚拟化应用 监控GPU虚拟化资源 父主题: 管理本地集群

    来自:帮助中心

    查看更多 →

  • 什么是VR云渲游平台

    、游戏娱乐等行业,使用云渲染流化技术实现3D及VR内容云上实时渲染、编码、推流并提供端侧接入SDK。平台具备对GPU加速云服务器、连接设备、应用等进行统一管理及细粒度业务监控能力,具有降低消费成本,提升用户体验,普及商业场景和保护内容版权等显著优势。

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 UCS On Premises GPU采用xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户定义使用的GPU数量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

  • GPU服务器上配置Lite Server资源软件环境

    安装nvidia-fabricmanager Ant系列GPU支持NvLink & NvSwitch,若您使用多GPU卡的机型,需额外安装与驱动版本对应的nvidia-fabricmanager服务使GPU卡间能够互联,否则可能无法正常使用GPU实例。 nvidia-fabricmanager必须和nvidia

    来自:帮助中心

    查看更多 →

  • GPU A系列裸金属服务器如何进行RoCE性能带宽测试?

    GPU A系列裸金属服务器如何进行RoCE性能带宽测试? 场景描述 本文主要指导如何在GPU A系列裸金属服务器上测试RoCE性能带宽。 前提条件 GPU A系列裸金属服务器已经安装了IB驱动。(网卡设备名称可以使用ibstatus或者ibstat获取。华为云Ant8裸金属服务器使用Ubuntu20

    来自:帮助中心

    查看更多 →

  • 安装并配置GPU驱动

    安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了