GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    gpu显存 更多内容
  • 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明

    序列说明 基于vLLM(v0.6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大ma

    来自:帮助中心

    查看更多 →

  • 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明

    序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大ma

    来自:帮助中心

    查看更多 →

  • 监控指标说明

    弹性伸缩组 1分钟 gpu_usage_gpu (Agent)GPU使用率 该指标用于统计弹性伸缩组的(Agent)GPU使用率,以百分比为单位。 计算公式:伸缩组中的所有 云服务器 (Agent)GPU使用率之和/伸缩组实例数 单位:百分比 0-100% 弹性伸缩组 1分钟 gpu_usage_mem

    来自:帮助中心

    查看更多 →

  • 如何处理ECC ERROR:执行nvidia-smi存在SRAM的ECC错误(V100显卡)

    问题原因 显存可能某个地方存在异常。 问题影响 可能影响一个或多个GPU的相关应用程序。 处理方法 执行nvidia-smi命令查看显卡信息。 如果在volatile Uncorr. ECC下发现存在ecc error,执行nvidia-smi -q -i &.{gpu_id}查看卡的详细信息。

    来自:帮助中心

    查看更多 →

  • 在Notebook调试环境中部署推理服务

    表1 请求服务参数说明 参数 是否必选 默认值 参数类型 描述 model 是 无 Str 通过OpenAI服务API接口启动服务时,推理请求必须填写此参数。取值必须和启动推理服务时的model ${container_model_path}参数保持一致。 通过vLLM服务API接口启动服务时,推理请求不涉及此参数。

    来自:帮助中心

    查看更多 →

  • GPU驱动不可用

    方法一:重新启动,选择安装GPU驱动时的内核版本,即可使用GPU驱动。 在 服务器 操作列下单击“远程登录 > 立即登录”。 单击远程登录操作面板上方的“发送CtrlAltDel”按钮,重启虚拟机。 然后快速刷新页面,按上下键,阻止系统继续启动,选择安装GPU驱动时的内核版本进入系统

    来自:帮助中心

    查看更多 →

  • Notebook实例出现“Server Connection Error”错误

    Notebook实例出现“Server Connection Error”错误 在Terminal中执行命令时,出现错误如图1 报错信息截图所示,此问题可能由于CPU/GPU显存等占满,可在JupyterLab界面下方查看内存使用情况,如图2所示。 此时Kernel会自动重启,存储在“/home/ma-user

    来自:帮助中心

    查看更多 →

  • 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明

    序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大ma

    来自:帮助中心

    查看更多 →

  • 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明

    序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大ma

    来自:帮助中心

    查看更多 →

  • 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明

    序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大ma

    来自:帮助中心

    查看更多 →

  • 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明

    序列说明 基于vLLM(v0.6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服务部署所需的最小昇腾卡数及该卡数下推荐的最大ma

    来自:帮助中心

    查看更多 →

  • 准备工作

    ython三方库版本、模型源码等与标杆环境(GPU/CPU)设置的不一致导致,为了在定位过程中少走弯路,需要在定位前先对训练环境及代码做有效排查。此外,问题定位主要基于GPU环境和NPU环境上运行的过程数据做对比,所以需要分别准备GPU和NPU训练环境,大部分场景需要规模相同的训

    来自:帮助中心

    查看更多 →

  • 查询规格详情和规格扩展信息列表

    String 该规格的GPU卡信息。 name:GPU名称 memory_mb:GPU显存大小 count:GPU显卡数量 alias_prefix:GPU显卡内部别名 info:asic_accelerators String 该规格的加速器信息。 name:加速器名称 memory_mb:加速器显存大小

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len

    来自:帮助中心

    查看更多 →

  • 训练任务

    参数详情:训练算法参数以及环境变量信息。 任务日志:任务运行过程中生成的日志信息,详情请查看训练任务日志查看和下载。 资源占用情况:显示任务占用的CPU、内存、GPU(显存)利用率、占用率等指标百分比折线图,详情请查看资源占用情况。 删除任务 单击操作栏的“删除”,删除单个任务。 勾选多个任务,单击列表上方的“删除”,可批量删除任务。

    来自:帮助中心

    查看更多 →

  • x86 V4实例(CPU采用Intel Broadwell架构)

    SSD 2 x 2*10GE GPU加速GPU加速型实例包括计算加速型(P系列)和图形加速型(G系列),提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。特别适合于深度学习、科学计算、CAE、3D动画渲染、CAD等应用。 表5 GPU加速型规格详情 规格名称/ID CPU

    来自:帮助中心

    查看更多 →

  • (推荐)自动安装GPU加速型ECS的GPU驱动(Windows)

    (推荐)自动安装GPU加速型E CS GPU驱动(Windows) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Windows实例上通过脚本自动安装GPU驱动。 使用须知 如果GPU加速型实例已安装G

    来自:帮助中心

    查看更多 →

  • 怎样查看GPU加速型云服务器的GPU使用率?

    怎样查看GPU加速云服务器GPU使用率? 问题描述 Windows Server 2012和Windows Server 2016操作系统的GPU加速云服务器无法从任务管理器查看GPU使用率。 本节操作介绍了两种查看GPU使用率的方法,方法一是在cmd窗口执行命令查看GPU使用

    来自:帮助中心

    查看更多 →

  • 附录:大模型推理常见问题

    附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len

    来自:帮助中心

    查看更多 →

  • 安装并配置GPU驱动

    安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

  • 安装并配置GPU驱动

    安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了