华为云云商店

华为云云商店,是华为云的线上应用商城。在云服务的生态系统中,云商店与合作伙伴致力于为用户提供优质、便捷的基于云计算、大数据业务的软件、服务和解决方案,满足华为云用户快速上云和快速开展业务的诉求。

 
 

    图片转excel软件识别文字 更多内容
  • 工作流介绍

    评估应用 通过上传测试图片,在线评估模板分类情况和模板的文字识别情况,保证能在多个模板情况下正确分类测试图片的模板,并且能正确识别测试图片中的识别文字。 评估应用 部署服务 模板图片评估后,可以部署模板至文字识别开发套件中,开发属于自己的文字识别应用,此应用用于识别自己所上传的多模板样式的图片。

    来自:帮助中心

    查看更多 →

  • 通过Excel导入数据

    通过Excel导入数据 使用说明 将本地的问卷数据通过Excel格式,导入到AstroFlow中。上传的Excel表单数据,必须符合如下要求: 文件大小不超过5M,且单个sheet页数据量不超过5000行,仅支持“.xls”和“.xlsx”文件。 导入的sheet表头中不能包含空

    来自:帮助中心

    查看更多 →

  • 消息

    支持将静态图片、GIF动图添加到自定义表情并进行管理 编辑拍照获取的图片并发送前 消息邮件 消息支持一键邮件,沟通更高效。 在消息聊天窗口,长按任意一条消息,点击“多选”,选择需要通过邮件转发的消息,点击右下角“更多”按钮,选择邮件,输入收件人后发送即可。 消息日程 长按单

    来自:帮助中心

    查看更多 →

  • 如何选购合适的API

    通用文字识别 :提取图片内的文字及其对应位置信息。 手写文字识别识别手写文字、印刷文字信息。 网络图片识别识别网络图片内的所有文字及其对应位置信息。 证件类 身份证识别、护照识别、银行卡识别 驾驶证识别、行驶证识别、道路运输证识别、车牌识别、VIN码识别 营业执照识别、名片识别 票据类 增值税发票识

    来自:帮助中心

    查看更多 →

  • 通用类

    功能介绍 通用表格识别 提取表格内的文字和所在行列位置信息,适应不同格式的表格。同时也识别表格外部的文字区域。用于各种单据和报表的电子化,恢复结构化信息。 通用文字识别 提取图片内的文字及其对应位置信息,并能够根据文字图片中的位置进行结构化整理工作。 手写文字识别 识别文档中的手写文

    来自:帮助中心

    查看更多 →

  • 上传模板图片

    上传模板图片 在使用单模板工作流开发应用之前,必须要明确文字识别的模板类型,明确以哪张图片作为模板训练文字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传某一格式的发票图片作为模板,训练的文字识别模型就能识别并提取同格式发票上的关键字段。 前提条件 已授权ModelArts服务和 对象存储服务 (OBS)。

    来自:帮助中心

    查看更多 →

  • 工作流介绍

    详细指导 上传模板图片 在使用多模板工作流开发应用之前,需要上传模板图片,明确以哪些图片作为模板训练文字识别模型。 上传模板图片 定义预处理 上传模板图片后,需要对模板图片进行预处理,去掉冗余部分,将图片旋转至水平,保证模型识别的准确性。 定义预处理 框选参照字段 在图片模板中框选参照

    来自:帮助中心

    查看更多 →

  • 评估应用

    图片区域,上传本地的图片作为测试图片。 上传图片后,右侧会显示文字识别结果,包括“识别区”和对应的“识别结果”。 上传在线图片 单击“在线URL”,切换至“在线URL”页签。在“开始识别”左侧输出框中输入待测试的图片URL地址,或者拖拽测试图片至虚线框内上传图片区域,上传在线图片作为测试图片。

    来自:帮助中心

    查看更多 →

  • 框选识别区

    框选识别区 在文字识别过程中,需要确定图片识别文字位置,这就需要在图片模板中框选识别区。 识别区指图片中待识别文字位置。所有需要识别图片中都会包含此识别区的字段,且位置固定不变,因此模型可以通过识别区找到需要识别内容的位置。 前提条件 已在自定义OCR控制台选择“多模板分

    来自:帮助中心

    查看更多 →

  • 框选参照字段

    框选参照字段 在文字识别过程中,套件会检查所识别图片与模板图片是否为同一种模板,并将识别图片校正后再提取结构化信息,支持图片平移、旋转与拉伸变换。 为了检查并校正待识别图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。

    来自:帮助中心

    查看更多 →

  • 解读识别结果

    图片中的文字块数目、文字块排列顺序、具体文本内容、所在位置、置信度等信息。 result字段仅在API调用成功后返回。 words_block_count表示文字识别结果,本示例中,识别出2个文字块,分别代表图片中的2行文字。 words_block_list表示文字块列表,按照图片文字从上到下、从左到右排列。

    来自:帮助中心

    查看更多 →

  • 评估

    上传测试图片或者上传在线图片,评估模板。 图4 评估模板 本地上传图片 默认进入“本地上传”页签,单击“上传图片”,或者拖拽测试图片至虚线框内上传图片区域,上传本地的图片作为测试图片。 上传图片后,右侧会显示文字识别结果,包括“识别区”和对应的“识别结果”。 上传在线图片 单击“

    来自:帮助中心

    查看更多 →

  • 上传模板图片

    上传模板图片 在使用多模板分类工作流开发应用之前,必须要明确文字识别的模板类型,明确以哪几种板式图片作为模板训练文字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传两种不同格式的发票图片作为模板,训练的文字识别模型就能识别并提取这两种格式发票上的关键字段。 前提条件

    来自:帮助中心

    查看更多 →

  • 框选参照字段

    框选参照字段 在文字识别过程中,套件会检查所识别图片与模板图片是否为同一种模板,并将识别图片校正后再提取结构化信息,支持图片平移、旋转与拉伸变换。 为了检查并校正待识别图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。

    来自:帮助中心

    查看更多 →

  • 框选识别区

    框选识别区 在文字识别过程中,需要确定图片识别文字位置,这就需要在图片模板中框选识别区。 识别区指图片中待识别文字位置。所有需要识别图片中都会包含此识别区的字段,且位置固定不变,因此模型可以通过识别区找到需要识别内容的位置。 前提条件 已在自定义OCR控制台选择“通用单模

    来自:帮助中心

    查看更多 →

  • 使用单模板工作流开发应用

    Pro的文字识别套件提供了通用单模板工作流,通过工作流指引可构建文字识别模板,识别单个板式图片中的文字,快速实现文档、票证等场景的文字识别。 本章节提供一个身份证样例,帮助您快速熟悉使用文字识别套件中的通用单模板工作流开发应用的过程。通过上传模板图片、框选参照字段和识别区,自动训

    来自:帮助中心

    查看更多 →

  • 框选参照字段

    框选参照字段 在文字识别过程中,套件会检查所识别图片与模板图片是否为同一种模板,并将识别图片校正后再提取结构化信息,支持图片平移、旋转与拉伸变换。 为了检查并校正待识别图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。

    来自:帮助中心

    查看更多 →

  • 上传模板图片

    上传模板图片 在使用多模板分类工作流开发应用之前,必须要明确文字识别的模板类型,明确以哪几种板式图片作为模板训练文字识别模型,基于自己的业务需求制定针对性的文字识别模型。例如上传两种不同格式的发票图片作为模板,训练的文字识别模型就能识别并提取这两种格式发票上的关键字段。 前提条件

    来自:帮助中心

    查看更多 →

  • 通用表格识别是否支持导出为excel格式

    通用表格识别是否支持导出为excel格式 通用表格识别支持将表格内容转换成可编辑的Excel格式,传入参数return_excel为true时,将返回的表格转换为Microsoft Excel对应的base64编码,可用Python函数 base64.b64decode解码后保存为

    来自:帮助中心

    查看更多 →

  • 上传模板图片

    需要定制识别的字段。例如上传某一格式的发票图片作为模板,配置文字识别模型就能识别并提取同格式发票上的关键字段。 前提条件 已在“自定义OCR”控制台选择“通用单模板工作流”创建应用,详情请见6.2新建应用。 提前准备待识别图片图片要求请见图片要求。 图片要求 保证图片质量:不

    来自:帮助中心

    查看更多 →

  • 约束与限制

    能处理反光、暗光等干扰的图片但影响识别精度。 目前支持识别单张身份证的正面或者反面。 支持居民身份证的正反面同时识别,不支持存在两张及以上同面身份证的图片识别文字识别服务属于公有云服务,线上用户资源共享,如果需要多并发请求,请提前联系我们。 户口本识别 只支持识别PNG、JPG、JPEG、BMP、TIFF格式的图片。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了