MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce 大文件排序 更多内容
  • MapReduce应用开发概述

    MapReduce应用开发概述 MapReduce应用开发简介 MapReduce应用开发常用概念 MapReduce应用开发流程介绍 父主题: MapReduce开发指南

    来自:帮助中心

    查看更多 →

  • MapReduce服务 MRS

    如果此列条件键没有值(-),表示此操作不支持指定条件键。 关于MapReduce服务( MRS )定义的条件键的详细信息请参见条件(Condition)。 您可以在SCP语句的Action元素中指定以下MapReduce服务(MRS)的相关操作。 表1 MapReduce服务(MRS)支持的授权项 授权项 描述

    来自:帮助中心

    查看更多 →

  • MapReduce常见问题

    MapReduce常见问题 ResourceManager进行主备切换后,任务中断后运行时间过长 MapReduce任务长时间无进展 为什么运行任务时客户端不可用 在缓存中找不到HDFS_DELEGATION_TOKEN如何处理 如何在提交MapReduce任务时设置任务优先级

    来自:帮助中心

    查看更多 →

  • 调测MapReduce应用

    调测MapReduce应用 在本地Windows环境中调测MapReduce应用 在Linux环境中调测MapReduce应用 父主题: MapReduce开发指南(普通模式)

    来自:帮助中心

    查看更多 →

  • 运行MapReduce作业

    M用户同步MRS集群说明。 当IAM用户的用户组的所属策略从MRS ReadOnlyAccess向MRS CommonOperations、MRS FullAccess、MRS Administrator变化时,或者反之从MRS CommonOperations、MRS FullAccess、MRS

    来自:帮助中心

    查看更多 →

  • 配置MapReduce Job基线

    段数据量小于splitSize,还是认为它是独立的分片。 - mapreduce.input.fileinputformat.split.minsize 可以设置数据分片的数据最小值。 0 父主题: MapReduce性能调优

    来自:帮助中心

    查看更多 →

  • 分区键和排序键有什么区别?

    名称存储在同一个分区。 表中的KV会根据排序键进行排序以后存储。查询数据时,您可以按照排序键输出数据。 支持主键 简单主键(分区键)和复合主键(分区键和排序键)。 复合主键(分区键和排序键)。 父主题: KVS概念类问题

    来自:帮助中心

    查看更多 →

  • 推荐引擎和排序引擎有什么区别?

    推荐引擎和排序引擎有什么区别? 推荐引擎 推荐引擎是以推荐为业务逻辑的引擎,即系统根据配置生成召回集作为起点,输出推荐结果集为终点的引擎。 排序引擎 排序引擎是以排序为业务逻辑的引擎,即用户提供排序集为输入,系统根据排序算法输出排序结果的引擎。 父主题: 自定义场景

    来自:帮助中心

    查看更多 →

  • 相似文档排序召回检索函数和操作符

    相似文档排序召回检索函数和操作符 ### 场景1: 功能说明:基于BM25算法族计算两个文本间的相似度,只对使用BM25索引的查询有效。 左参数类型:text 右参数类型:text 返回值类型:double precision 代码示例: -- 建表及BM25索引 gaussdb=#

    来自:帮助中心

    查看更多 →

  • 什么是MapReduce服务

    什么是MapReduce服务 大数据是人类进入互联网时代以来面临的一个巨大问题:社会生产生活产生的数据量越来越大,数据种类越来越多,数据产生的速度越来越快。传统的数据处理技术,比如说单机存储,关系数据库已经无法解决这些新的大数据问题。为解决以上大数据处理问题,Apache基金会推

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用Java语言进行开发,使用IntelliJ

    来自:帮助中心

    查看更多 →

  • 准备MapReduce开发环境

    准备MapReduce开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。

    来自:帮助中心

    查看更多 →

  • MapReduce样例工程介绍

    当前MRS提供以下MapReduce相关样例工程: 表1 MapReduce相关样例工程 样例工程位置 描述 mapreduce-example-security MapReduce统计数据的应用开发示例: 提供了一个MapReduce统计数据的应用开发示例,通过类CollectionMa

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例代码

    educer抽象类实现。 main方法提供建立一个MapReduce job,并提交MapReduce作业到hadoop集群。 代码样例 下面代码片段仅为演示,具体代码参见com.huawei.bigdata.mapreduce.examples.FemaleInfoCollector类:

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    MapReduce Java API接口介绍 关于MapReduce的详细API可以参考官方网站。 http://hadoop.apache.org/docs/r3.1.1/api/index.html 常用接口 MapReduce中常见的类如下: org.apache.hadoop

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发简介

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例代码

    educer抽象类实现。 main方法提供建立一个MapReduce job,并提交MapReduce作业到hadoop集群。 代码样例 下面代码片段仅为演示,具体代码参见com.huawei.bigdata.mapreduce.examples.FemaleInfoCollector类:

    来自:帮助中心

    查看更多 →

  • 大文件分片上传初始化(API名称:file/initBigFile)

    大文件分片上传初始化(API名称:file/initBigFile) 功能介绍 大文件分片上传初始化 相关接口 接口名称 调用说明 获取Token 调用该接口获取到Token,再调用其他接口时,需要在请求消息头中添加“Authorization”,其值即为Token。 URL 请求方式

    来自:帮助中心

    查看更多 →

  • 公网环境下如何提高上传大文件速度?(Java SDK)

    公网环境下如何提高上传大文件速度?(Java SDK) 在公网环境下对于超过100MB的大文件,建议通过分段上传方式上传。 分段上传是将单个对象拆分为一系列段分别上传,每个段都是对象数据的连续部分,您可以按照任意顺序上传段。如果其中某个段传输失败,可以重新传输该段且不会影响其他段

    来自:帮助中心

    查看更多 →

  • MapReduce服务MRS接入LTS

    MapReduce服务 MRS接入LTS 支持MapReduce服务MRS日志接入LTS。 具体接入方法请参见MRS服务对接云日志服务。 父主题: 使用云服务接入LTS

    来自:帮助中心

    查看更多 →

  • MapReduce性能调优

    MapReduce性能调优 多CPU内核下的MapReduce调优配置 配置MapReduce Job基线 MapReduce Shuffle调优 MapReduce大任务的AM调优 配置MapReduce任务推测执行 通过Slow Start调优MapReduce任务 MapReduce任务commit阶段优化

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了