MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    hadoop运行mapreduce 更多内容
  • 快速使用Hadoop

    org/repos/dist/release/hadoop/common/中下载Hadoop的样例程序。 例如,选择hadoop-x.x.x版本,下载“hadoop-x.x.x.tar.gz”,解压后在“hadoop-x.x.x\share\hadoop\mapreduce”路径下获取“hadoop-mapreduce-examples-x

    来自:帮助中心

    查看更多 →

  • 准备MapReduce应用运行环境

    准备MapReduce应用运行环境 MapReduce运行环境可以部署在Linux环境下。您可以按照如下操作完成运行环境准备。 操作步骤 确认服务端YARN组件和MapReduce组件已经安装,并正常运行。 客户端运行环境已安装1.7或1.8版本的JDK。 客户端机器的时间与H

    来自:帮助中心

    查看更多 →

  • 开启Native Task特性后,Reduce任务在部分操作系统运行失败

    开启Native Task特性后,Reduce任务在部分操作系统运行失败 问题 开启Native Task特性后,Reduce任务在部分操作系统运行失败。 回答 运行包含Reduce的Mapreduce任务时,通过-Dmapreduce.job.map.output.collector.class=org

    来自:帮助中心

    查看更多 →

  • MapReduce REST API接口介绍

    apache.org/docs/r3.1.1/hadoop-mapreduce-client/hadoop-mapreduce-client-hs/HistoryServerRest.html 准备运行环境 在节点上安装客户端,例如安装到“/opt/client”目录。 进入客户端安装

    来自:帮助中心

    查看更多 →

  • MapReduce REST API接口介绍

    apache.org/docs/r3.1.1/hadoop-mapreduce-client/hadoop-mapreduce-client-hs/HistoryServerRest.html 准备运行环境 在节点上安装客户端,例如安装到“/opt/client”目录。 进入客户端安装目

    来自:帮助中心

    查看更多 →

  • 配置MapReduce应用安全认证

    用程序中需要写入安全认证代码,确保MapReduce程序能够正常运行。 安全认证有两种方式。 命令行认证 提交MapReduce应用程序运行前,在MapReduce客户端执行如下命令获得认证。 kinit 组件业务用户 代码认证 通过获取客户端的principal和keytab文件在应用程序中进行认证。

    来自:帮助中心

    查看更多 →

  • 开启Native Task特性后,Reduce任务在部分操作系统运行失败

    开启Native Task特性后,Reduce任务在部分操作系统运行失败 问题 开启Native Task特性后,Reduce任务在部分操作系统运行失败。 回答 运行包含Reduce的Mapreduce任务时,通过-Dmapreduce.job.map.output.collector.class=org

    来自:帮助中心

    查看更多 →

  • MapReduce日志介绍

    MapReduce日志介绍 日志描述 日志默认存储路径: JobhistoryServer:“/var/log/Bigdata/mapreduce/jobhistory”(运行日志),“/var/log/Bigdata/audit/mapreduce/jobhistory”(审计日志)

    来自:帮助中心

    查看更多 →

  • MapReduce日志介绍

    MapReduce日志介绍 日志描述 日志默认存储路径: JobhistoryServer:“/var/log/Bigdata/mapreduce/jobhistory”(运行日志),“/var/log/Bigdata/audit/mapreduce/jobhistory”(审计日志)

    来自:帮助中心

    查看更多 →

  • 新建Hadoop集群配置

    新建Hadoop集群配置 集群配置管理支持新建、编辑或删除Hadoop集群配置。 Hadoop集群配置主要用于新建Hadoop类型连接时,能够简化复杂的连接参数配置,如图1所示。 图1 使用集群配置前后对比 CDM 支持的Hadoop类型连接主要包括以下几类: MRS 集群:MRS HDFS,MRS

    来自:帮助中心

    查看更多 →

  • MapReduce任务异常,临时文件未删除

    MapReduce任务异常,临时文件未删除 用户问题 MapReduce任务异常临时文件为什么没有删除? MR任务即MapReduce任务,关于MapReduce介绍请参考MapReduce。 问题现象 HDFS临时目录文件过多,占用内存。 原因分析 MapReduce任务提交时

    来自:帮助中心

    查看更多 →

  • 提升HBase BulkLoad工具批量加载效率

    TsvImporterByteMapper”时可以得到更好的性能。 org.apache.hadoop.hbase.mapreduce.TsvImporterByteMapper 和 org.apache.hadoop.hbase.mapreduce.TsvImporterTextMapper 父主题: HBase性能调优

    来自:帮助中心

    查看更多 →

  • 准备MapReduce开发和运行环境

    准备MapReduce开发和运行环境 准备开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。

    来自:帮助中心

    查看更多 →

  • 多个NameService环境下运行MapReduce任务失败

    多个NameService环境下运行MapReduce任务失败 问题 多个NameService环境下,运行使用viewFS功能的MapReduce或YARN任务失败。 回答 当使用viewFS时,只有在viewFS中挂载的目录才能被访问到。所以最可能的原因是配置的路径没有在viewFS的挂载点上。例如:

    来自:帮助中心

    查看更多 →

  • 准备MapReduce开发和运行环境

    准备MapReduce开发和运行环境 准备开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。

    来自:帮助中心

    查看更多 →

  • 准备MapReduce开发和运行环境

    准备MapReduce开发和运行环境 准备开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。

    来自:帮助中心

    查看更多 →

  • MapReduce大任务的AM调优

    MapReduce大任务的AM调优 操作场景 当运行一个大任务(map总数达到了10万的规模),但是一直没有运行成功。经过查询发现是ApplicationMaster(以下简称AM)反应缓慢,最终超时失败。 此任务的问题是,task数量变多时,AM管理的对象也线性增长,因此就需要

    来自:帮助中心

    查看更多 →

  • 多个NameService环境下运行MapReduce任务失败

    多个NameService环境下运行MapReduce任务失败 问题 多个NameService环境下,运行使用viewFS功能的MapReduce或YARN任务失败。 回答 当使用viewFS时,只有在viewFS中挂载的目录才能被访问到。所以最可能的原因是配置的路径没有在viewFS的挂载点上。例如:

    来自:帮助中心

    查看更多 →

  • 提升HBase BulkLoad工具批量加载效率

    TsvImporterByteMapper”时可以得到更好的性能。 org.apache.hadoop.hbase.mapreduce.TsvImporterByteMapper 和 org.apache.hadoop.hbase.mapreduce.TsvImporterTextMapper 父主题: HBase性能调优

    来自:帮助中心

    查看更多 →

  • MapReduce大任务的AM调优

    MapReduce大任务的AM调优 操作场景 当运行一个大任务(map总数达到了10万的规模),但是一直没有运行成功。经过查询发现是ApplicationMaster(以下简称AM)反应缓慢,最终超时失败。 此任务的问题是,task数量变多时,AM管理的对象也线性增长,因此就需要

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发简介

    MapReduce应用开发简介 MapReduce简介 Hadoop MapReduce是一个使用简易的并行计算软件框架,基于它写出来的应用程序能够运行在由上千个 服务器 组成的大型集群上,并以一种可靠容错的方式并行处理上T级别的数据集。 一个MapReduce作业(applicat

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了