MapReduce服务 MRS

 

MapReduce服务(MapReduce Service)提供租户完全可控的企业级大数据集群云服务,轻松运行Hadoop、Spark、HBase、Kafka、Storm等大数据组件。包年更优惠,买1年只需付10个月费用

 
 

    mapreduce 电子书 更多内容
  • 运行MapReduce作业

    M用户同步 MRS 集群说明。 当IAM用户的用户组的所属策略从MRS ReadOnlyAccess向MRS CommonOperations、MRS FullAccess、MRS Administrator变化时,或者反之从MRS CommonOperations、MRS FullAccess、MRS

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发简介

    MapReduce应用开发简介 MapReduce简介 Hadoop MapReduce是一个使用简易的并行计算软件框架,基于它写出来的应用程序能够运行在由上千个 服务器 组成的大型集群上,并以一种可靠容错的方式并行处理上T级别的数据集。 一个MapReduce作业(applicat

    来自:帮助中心

    查看更多 →

  • 调测MapReduce应用

    调测MapReduce应用 在本地Windows环境中调测MapReduce应用 在Linux环境中调测MapReduce应用 父主题: MapReduce开发指南(普通模式)

    来自:帮助中心

    查看更多 →

  • 什么是MapReduce服务

    什么是MapReduce服务 大数据是人类进入互联网时代以来面临的一个巨大问题:社会生产生活产生的数据量越来越大,数据种类越来越多,数据产生的速度越来越快。传统的数据处理技术,比如说单机存储,关系数据库已经无法解决这些新的大数据问题。为解决以上大数据处理问题,Apache基金会推

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 了解基本概念 在开始开发应用前,需要了解MapReduce的基本概念。 MapReduce应用开发简介

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例代码

    educer抽象类实现。 main方法提供建立一个MapReduce job,并提交MapReduce作业到hadoop集群。 代码样例 下面代码片段仅为演示,具体代码参见com.huawei.bigdata.mapreduce.examples.FemaleInfoCollector类:

    来自:帮助中心

    查看更多 →

  • MapReduce应用开发流程介绍

    MapReduce应用开发流程介绍 开发流程中各阶段的说明如图1和表1所示。 图1 MapReduce应用程序开发流程 表1 MapReduce应用开发的流程说明 阶段 说明 参考文档 准备开发环境 在进行应用开发前,需首先准备开发环境,推荐使用Java语言进行开发,使用IntelliJ

    来自:帮助中心

    查看更多 →

  • 准备MapReduce开发环境

    准备MapReduce开发环境 在进行应用开发时,要准备的开发和运行环境如表1所示。 表1 开发环境 准备项 说明 操作系统 开发环境:Windows系统,支持Windows 7以上版本。 运行环境:Windows系统或Linux系统。 如需在本地调测程序,运行环境需要和集群业务平面网络互通。

    来自:帮助中心

    查看更多 →

  • MapReduce样例工程介绍

    当前MRS提供以下MapReduce相关样例工程: 表1 MapReduce相关样例工程 样例工程位置 描述 mapreduce-example-security MapReduce统计数据的应用开发示例: 提供了一个MapReduce统计数据的应用开发示例,通过类CollectionMa

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例代码

    educer抽象类实现。 main方法提供建立一个MapReduce job,并提交MapReduce作业到hadoop集群。 代码样例 下面代码片段仅为演示,具体代码参见com.huawei.bigdata.mapreduce.examples.FemaleInfoCollector类:

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    MapReduce Java API接口介绍 关于MapReduce的详细API可以参考官方网站。 http://hadoop.apache.org/docs/r3.1.1/api/index.html 常用接口 MapReduce中常见的类如下: org.apache.hadoop

    来自:帮助中心

    查看更多 →

  • MapReduce服务MRS接入LTS

    MapReduce服务 MRS接入LTS 支持MapReduce服务MRS日志接入LTS。 具体接入方法请参见MRS服务对接云日志服务。 父主题: 使用云服务接入LTS

    来自:帮助中心

    查看更多 →

  • 配置MapReduce shuffle address

    配置MapReduce shuffle address 配置场景 当MapReduce shuffle服务启动时,它尝试基于localhost绑定IP。如果需要MapReduce shuffle服务连接特定IP,可以参考该章节进行配置。 配置描述 当需要MapReduce shu

    来自:帮助中心

    查看更多 →

  • MapReduce性能调优

    MapReduce性能调优 多CPU内核下MapReduce调优配置 配置MapReduce Job基线 MapReduce Shuffle调优 MapReduce大任务的AM调优 配置MapReduce任务推测执行 通过Slow Start调优MapReduce任务 MapReduce任务commit阶段优化

    来自:帮助中心

    查看更多 →

  • MapReduce性能调优

    MapReduce性能调优 多CPU内核下的MapReduce调优配置 配置MapReduce Job基线 MapReduce Shuffle调优 MapReduce大任务的AM调优 配置MapReduce任务推测执行 通过Slow Start调优MapReduce任务 MapReduce任务commit阶段优化

    来自:帮助中心

    查看更多 →

  • MapReduce开发指南

    MapReduce开发指南 MapReduce应用开发概述 准备MapReduce应用开发环境 开发MapReduce应用 调测MapReduce应用 MapReduce应用开发常见问题

    来自:帮助中心

    查看更多 →

  • 配置MapReduce应用安全认证

    配置MapReduce应用安全认证 场景说明 在kerberos认证集群环境下,各个组件之间的相互通信不能够简单的互通,而需要在通信之前进行相互认证,以确保通信的安全性。 用户在提交MapReduce应用程序时,需要与Yarn、HDFS等之间进行通信。那么提交MapReduce的应

    来自:帮助中心

    查看更多 →

  • MapReduce Java API接口介绍

    MapReduce Java API接口介绍 MapReduce常用接口 MapReduce中常见的类如下。 org.apache.hadoop.mapreduce.Job:用户提交MR作业的接口,用于设置作业参数、提交作业、控制作业执行以及查询作业状态。 org.apache.hadoop

    来自:帮助中心

    查看更多 →

  • 配置MapReduce应用安全认证

    配置MapReduce应用安全认证 场景说明 在安全集群环境下,各个组件之间的相互通信不能够简单的互通,而需要在通信之前进行相互认证,以确保通信的安全性。 用户在提交MapReduce应用程序时,需要与Yarn、HDFS等之间进行通信。那么提交MapReduce的应用程序中需要写

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例程序

    MapReduce统计样例程序 MapReduce统计样例程序开发思路 MapReduce统计样例代码 父主题: 开发MapReduce应用

    来自:帮助中心

    查看更多 →

  • MapReduce统计样例代码

    educer抽象类实现。 main方法提供建立一个MapReduce job,并提交MapReduce作业到hadoop集群。 代码样例 下面代码片段仅为演示,具体代码参见com.huawei.bigdata.mapreduce.examples.FemaleInfoCollector类:

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了