GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    GPU运算服务器收费 更多内容
  • 专属主机上部署的云服务器是否收费?

    专属主机上部署的 云服务器 是否收费? 专属主机上的 服务器 不再单独收取所用资源的费用。但是如果您的云服务器挂载了云硬盘,或绑定了弹性公网IP,那么您仍需要为存储和弹性公网IP付费。 父主题: 计费类

    来自:帮助中心

    查看更多 →

  • 计费说明

    实例数量。 具体请参考弹性云服务器产品价格详情。 镜像 银河麒麟(KylinOS)、统信(UnionTechOS)收费,其余公共镜像免费。如果通过云市场购买,请以云市场价格为准。 说明: 通过私有镜像创建云服务器时,如果私有镜像是由市场镜像创建的云服务器创建的,则会根据云市场价格收取镜像费用。

    来自:帮助中心

    查看更多 →

  • 如何进行VR头显空间设置?

    对于使用第三方VR运行环境(如SteamVR)的用户,GPU云服务器创建完成或重启后,建议用户在连接头显设备前先进行房间设置,即登录GPU云服务器配置环境,包括设置默认身高等操作。 前提条件 已在VR云渲游平台成功创建应用。 创建的GPU加速云服务器为“闲置”状态。 操作步骤 获取GPU云服务器的弹性公网IP。

    来自:帮助中心

    查看更多 →

  • 字符串函数和运算符

    字符串函数和运算符 字符串运算符 ||表示字符连接 SELECT 'he'||'llo'; –hello 字符串函数 这些函数假定输入字符串包含有效的UTF-8编码的Unicode代码点。不会显式检查UTF-8数据是否有效,对于无效的UTF-8数据,函数可能会返回错误的结果。可以

    来自:帮助中心

    查看更多 →

  • 应用GPU资源调度方式

    应用GPU资源调度方式 IEF支持多应用共享的方式使用GPU显卡。 IEF支持单个应用使用多个GPU显卡。 GPU资源调度基于GPU显存容量,调度采用GPU显存预分配方式而非实时GPU显存资源。 当应用需要使用的GPU显存资源小于单个GPU卡显存时,支持以共享方式进行资源调度,对

    来自:帮助中心

    查看更多 →

  • GPU实例故障自诊断

    GPU实例故障自诊断 GPU实例故障,如果已安装GPU监控的CES Agent,当GPU服务器出现异常时则会产生事件通知,可以及时发现问题避免造成用户损失。如果没有安装CES Agent,只能依赖用户对故障的监控情况,发现故障后及时联系技术支持处理。 GPU实例故障处理流程 GPU实例故障分类列表

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    CCE AI套件(NVIDIA GPU) 插件介绍 CCE AI套件(NVIDIA GPU)插件是支持在容器中使用GPU显卡的设备管理插件,集群中使用GPU节点时必须安装本插件。 字段说明 表1 参数描述 参数 是否必选 参数类型 描述 basic 是 object 插件基础配置参数。

    来自:帮助中心

    查看更多 →

  • CCE AI套件(NVIDIA GPU)

    /nvidia-smi 若能正常返回GPU信息,说明设备可用,插件安装成功。 GPU驱动支持列表 当前GPU驱动支持列表仅针对1.2.28及以上版本的GPU插件。 如果您需要安装最新版本的GPU驱动,请将您的GPU插件升级到最新版本。 表2 GPU驱动支持列表 GPU型号 支持集群类型 机型规格

    来自:帮助中心

    查看更多 →

  • GPU插件检查异常处理

    GPU插件检查异常处理 检查项内容 检查到本次升级涉及GPU插件,可能影响新建GPU节点时GPU驱动的安装。 解决方案 由于当前GPU插件的驱动配置由您自行配置,需要您验证两者的兼容性。建议您在测试环境验证安装升级目标版本的GPU插件,并配置当前GPU驱动后,测试创建节点是否正常使用。

    来自:帮助中心

    查看更多 →

  • GPU虚拟化概述

    GPU虚拟化概述 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。

    来自:帮助中心

    查看更多 →

  • gpu-device-plugin

    安装nvidia-fabricmanager服务 A100/A800 GPU支持 NvLink & NvSwitch,若您使用多GPU卡的机型,需额外安装与驱动版本对应的nvidia-fabricmanager服务使GPU卡间能够互联,否则可能无法正常使用GPU实例。 本文以驱动版本470.103

    来自:帮助中心

    查看更多 →

  • 服务怎么收费的?

    服务怎么收费的? 请参考本服务计费说明。 父主题: 关于服务购买

    来自:帮助中心

    查看更多 →

  • 资源编排如何收费

    资源编排 如何收费 资源编排本身不收取任何费用,但使用模板创建资源栈时,资源编排会帮助您创建模板指定的云服务资源,创建的云服务资源具体收费以各云服务价格为准,请参见产品价格详情。 父主题: 资源编排

    来自:帮助中心

    查看更多 →

  • DevStar是否收费?

    DevStar是否收费? 问题描述 DevStar是否收费? 计费说明 DevStar本身是免费的。如果您使用DevStar的模板创建代码工程,并将代码工程导入代码仓库,由于该功能涉及到项目管理和代码托管两个服务,因此可能由于超出这两个服务的免费范围而产生计费。关于这两个服务的计费请参见CodeArts计费说明。

    来自:帮助中心

    查看更多 →

  • ModelArts Pro如何收费?

    将存储在OBS中的应用部署上线为在线服务。 视觉套件 视觉套件使用过程中依赖对象存储服务(Object Storage Service,OBS)、ModelArts服务和华为HiLens服务的使用,依赖服务会产生相应的费用。 视觉套件涉及ModelArts收费的功能如表3所示,价格详情请见ModelArts价格详情。

    来自:帮助中心

    查看更多 →

  • 如何避免非GPU/NPU负载调度到GPU/NPU节点?

    如何避免非GPU/NPU负载调度到GPU/NPU节点? 问题现象 当集群中存在GPU/NPU节点和普通节点混合使用的场景时,普通工作负载也可以调度到GPU/NPU节点上,可能出现GPU/NPU资源未充分利用的情况。 问题原因 由于GPU/NPU节点同样提供CPU、内存资源,在一般

    来自:帮助中心

    查看更多 →

  • 使用Kubernetes默认GPU调度

    通过nvidia.com/gpu指定申请GPU的数量,支持申请设置为小于1的数量,比如nvidia.com/gpu: 0.5,这样可以多个Pod共享使用GPUGPU数量小于1时,不支持跨GPU分配,如0.5 GPU只会分配到一张卡上。 使用nvidia.com/gpu参数指定GPU数量时,re

    来自:帮助中心

    查看更多 →

  • 方案概述

    方案架构图 该解决方案将会部署如下资源: 创建云渲染服务器,内置开源Blender软件,提供渲染算力。 云渲染服务器绑定弹性公网IP,用户可通过该公网IP提交渲染任务。 此外,您可以通过使用云监控服务来监测弹性云服务器的CPU、内存、磁盘IO和网络等指标,当资源利用率超过阈值时触发告警。 方案优势

    来自:帮助中心

    查看更多 →

  • 训练作业找不到GPU

    GPU。 处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器GPU编号,可以为0,1,2,3等,表明对程序可见的GP

    来自:帮助中心

    查看更多 →

  • 准备GPU虚拟化资源

    准备GPU虚拟化资源 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。本文介绍如何在GPU节点上实现GPU的调度和隔离能力。 前提条件 配置 支持版本 集群版本 v1.23.8-r0、v1.25

    来自:帮助中心

    查看更多 →

  • Ubuntu系列弹性云服务器如何安装图形化界面?

    执行reboot命令,重启服务器。 (可选)GPU加速型弹性云服务器结果验证 对于GPU加速型弹性云服务器,在安装完图形化界面后,可通过如下操作验证驱动是否正常工作。 登录管理控制台。 为弹性云服务器配置安全组。 单击弹性云服务器名称,查看弹性云服务器详情,在弹性云服务器详情页面,选择“安全组”。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了