GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    GPU并行运算主机好处 更多内容
  • (推荐)自动安装GPU加速型ECS的GPU驱动(Windows)

    (推荐)自动安装GPU加速型E CS GPU驱动(Windows) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Windows实例上通过脚本自动安装GPU驱动。 使用须知 如果GPU加速型实例已安装G

    来自:帮助中心

    查看更多 →

  • 怎样查看GPU加速型云服务器的GPU使用率?

    怎样查看GPU加速 云服务器 GPU使用率? 问题描述 Windows Server 2012和Windows Server 2016操作系统的GPU加速 服务器 无法从任务管理器查看GPU使用率。 本节操作介绍了两种查看GPU使用率的方法,方法一是在cmd窗口执行命令查看GPU使用

    来自:帮助中心

    查看更多 →

  • 选择GPU节点驱动版本

    选择GPU节点驱动版本 使用GPU加速云服务器时,需要安装正确的Nvidia基础设施软件,才可以使用GPU实现计算加速功能。在使用GPU前,您需要根据GPU型号,选择兼容配套软件包并安装。 本文将介绍如何选择GPU节点的驱动版本及配套的CUDA Toolkit。 如何选择GPU节点驱动版本

    来自:帮助中心

    查看更多 →

  • 安装并配置GPU驱动

    安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

  • 安装并配置GPU驱动

    安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:

    来自:帮助中心

    查看更多 →

  • GPU节点驱动版本

    GPU节点驱动版本 选择GPU节点驱动版本 CCE推荐的GPU驱动版本列表 手动更新GPU节点驱动版本 通过节点池升级节点的GPU驱动版本 父主题: GPU调度

    来自:帮助中心

    查看更多 →

  • 使用GPU虚拟化

    设备。 init容器不支持使用GPU虚拟化资源。 GPU虚拟化支持显存隔离、显存与算力隔离两种隔离模式。单个GPU卡仅支持调度同一种隔离模式的工作负载。 使用GPU虚拟化后,不支持使用Autoscaler插件自动扩缩容GPU虚拟化节点。 XGPU服务的隔离功能不支持以UVM的方式申请显存,即调用CUDA

    来自:帮助中心

    查看更多 →

  • GPU实例故障处理流程

    GPU实例故障处理流程 GPU实例故障处理流程如图1所示,对应的操作方法如下: CES监控事件通知:配置GPU的CES监控后会产生故障事件通知。 故障信息收集:可使用GPU故障信息收集脚本一键收集,也可参考故障信息收集执行命令行收集。 GPU实例故障分类列表:根据错误信息在故障分类列表中识别故障类型。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    eepSpeed的核心思想是在单个GPU上实现大规模模型并行训练,从而提高训练速度。DeepSpeed提供了一系列的优化技术,如ZeRO内存优化、分布式训练等,可以帮助用户更好地利用多个GPU进行训练 Accelerate是一种深度学习加速框架,主要针对分布式训练场景。Accel

    来自:帮助中心

    查看更多 →

  • 挂载OBS使用限制

    'true' : 表示挂载OBS需要创建obssidecar容器。 挂载obs并行文件系统时,obssidecar容器需预留一定内存以保障业务可靠性,防止容器因资源不足异常退出。当业务容器挂载单个obs并行文件系统时,CPU和内存规格建议配置如下: "obssidecar-injector-webhook/cpu":

    来自:帮助中心

    查看更多 →

  • 训练作业找不到GPU

    GPU。 处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器GPU编号,可以为0,1,2,3等,表明对程序可见的GP

    来自:帮助中心

    查看更多 →

  • 准备GPU虚拟化资源

    准备GPU虚拟化资源 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。本文介绍如何在GPU节点上实现GPU的调度和隔离能力。 前提条件 配置 支持版本 集群版本 v1.23.8-r0、v1.25

    来自:帮助中心

    查看更多 →

  • 部署推理服务

    \ --gpu-memory-utilization=0.9 \ --trust-remote-code 方式二:通过vLLM服务API接口启动服务 在llm_inference/ascend_vllm/vllm-gpu-0.4.2目录下通过vLLM服务API接口启动服务,具体操作命令如下,API

    来自:帮助中心

    查看更多 →

  • 应用场景

    程制图。 推荐使用GPU加速型弹性云服务器,基于NVIDIA Tesla M60硬件虚拟化技术,提供较为经济的图形加速能力。能够支持DirectX、OpenGL,可以提供最大显存1GiB、分辨率为4096×2160的图形图像处理能力。 更多信息,请参见GPU加速型。 数据分析 处

    来自:帮助中心

    查看更多 →

  • 分布式训练功能介绍

    代码简单:仅需修改一行代码。 通信瓶颈 :负责reducer的GPU更新模型参数后分发到不同的GPU,因此有较大的通信开销。 GPU负载不均衡:负责reducer的GPU需要负责汇总输出、计算损失和更新权重,因此显存和使用率相比其他GPU都会更高。 DistributedDataParallel进行多机多卡训练的优缺点

    来自:帮助中心

    查看更多 →

  • 并行文件系统

    并行文件系统 并行文件系统挂载后,为何显示256T? 文件列表是否支持排序?

    来自:帮助中心

    查看更多 →

  • 从OBS并行导入数据

    从OBS并行导入数据 关于OBS并行导入 从OBS导入CSV、TXT数据 从OBS导入ORC、CARBONDATA数据 父主题: 导入数据

    来自:帮助中心

    查看更多 →

  • 认证测试中心能给用户带来什么好处?

    认证测试中心能给用户带来什么好处? 认证测试中心可以通过主动的方法来检测和管理安全事件,与通过服务解决方案部署的扫描、检测和保障的持续响应相结合,从而限制安全事件的影响。 父主题: 产品咨询

    来自:帮助中心

    查看更多 →

  • 主机监控

    支持GPU监控的环境约束 BMS硬件监控指标采集说明 什么是插件修复配置? 怎样让新购ECS实例中带有操作系统监控功能? Agent各种状态说明及异常状态处理方法 基础监控与操作系统监控数据出现不一致的问题 云监控服务统计的弹性云服务器网络流量与云主机系统内工具检测不一致的问题 未安装UVP

    来自:帮助中心

    查看更多 →

  • 日期、时间函数及运算符

    日期、时间函数及运算符 日期时间运算运算符 示例 结果 + date '2012-08-08' + interval '2' day 2012-08-10 + time '01:00' + interval '3' hour 04:00:00.000 + timestamp '2012-08-08

    来自:帮助中心

    查看更多 →

  • 用户指南

    支持多种数据类型,包括:整型数据、字符型数据、浮点型数据、时间型数据等。 支持算术表达式计算(+、-、*、%、/、|、&),条件表达式运算(<、<=、>、>=、<>、between/and、In等),逻辑运算(or、and、not等),一般函数(字符函数、整型函数、时间函数等),聚合函数(count/sum/avg/min/max)等等。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了