中软国际数据治理专业服务解决方案实践

中软国际数据治理专业服务解决方案实践

    sqlite 多大数据 更多内容
  • 数据合并

    数据合并 数据连接 数据连接是将特征列维度不完全相同的数据集连接成一份数据数据集特征不完全相同的原因,比如现网中不同 系统采集的数据。其原理与“数据集”界面的数据连接原理相同,具体请参见数据连接。 操作步骤如下所示。 单击界面右上角的图标,选择“数据处理 > 数据合并 > 数据连接”,界面新增“数据连接”内容。

    来自:帮助中心

    查看更多 →

  • 数据采样

    数据采样 如果数据量太大,造成特征操作等待的时间长,用户可以通过采样功能减少特征处理的数据量,提升特征处理的速度。 数据采样提供如下两种方式,请根据实际情况进行选择: 随机采样:按照比例进行样本数据的随机采样。 分层采样:如果一个特征或多个特征组合样本值的类型多样,为保证采样数据

    来自:帮助中心

    查看更多 →

  • 数据解析

    数据解析 创建解析任务 启动解析任务 父主题: 应用数据

    来自:帮助中心

    查看更多 →

  • 数据准备

    数据准备 数据服务的优势是什么 私有模板和公共模板的区别是什么 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 数据过滤

    数据过滤 算子简介 名称:数据过滤 功能说明:根据设置的条件过滤数据,满足条件的数据则输出,不满足条件的数据将被丢弃。 约束:下游不允许对接数据源及产品过滤算子。 算子配置 基础配置项 算子名称: 配置项英文名:name 说明:算子名称,对算子进行个性化的命名,以辅助增加可读性。

    来自:帮助中心

    查看更多 →

  • 数据准备

    数据准备 数据集中的数据导入特征工程后,可能存在空值、冗余、数据不足等情况,或者用户需要将多次导入的数据集实例进行数据联合。以上情况,都可以在数据准备中进行操作。当前数据准备包含的功能有:数据修复、数据过滤、数据联合、数据连接、数据去噪。 数据修复 用户可以在数据修复中对单列进行

    来自:帮助中心

    查看更多 →

  • 数据探索

    数据探索 本章节以“NormalDistribution.csv”(正态分布图的展示)为例,介绍数据探索的基本操作方法。 创建查询 配置查询条件 查看查询结果 父主题: 应用数据

    来自:帮助中心

    查看更多 →

  • 数据探索

    数据探索 管理任务 管理模板 父主题: 管理基础工具

    来自:帮助中心

    查看更多 →

  • 数据接入

    数据接入 角色访问权限 管理软件包 管理采集机(运维) 管理采集机(用户) 管理采集任务 管理本地上传任务 数据源配置参考 安装采集Agent 父主题: 管理数据上云

    来自:帮助中心

    查看更多 →

  • 数据计算

    数据计算 算子简介 名称:数据计算 功能说明:按照表达式进行数值计算,计算的结果赋值给某个属性。举例:原消息中有温度属性,其数值是以摄氏度数值表示,可以通过本算子设置计算公式,将摄氏温度计算转换成华氏度读数再赋予给原来的温度属性,或者可以选择将计算转换后的数值赋予一个新属性。 约

    来自:帮助中心

    查看更多 →

  • 处理数据

    处理数据 入门流程 示例:图片质量变换

    来自:帮助中心

    查看更多 →

  • 选择数据

    新建训练数据集 在“数据选择”页面,单击“新建训练数据集”,右侧弹出“新建数据集”页面,根据数据存储位置和数据标注情况,按表1填写数据集基本信息,然后单击“确定”。 图3 新建数据集 表1 新建训练数据集参数说明 参数 说明 数据集名称 待新建的数据集名称。 描述 数据集简要描述。

    来自:帮助中心

    查看更多 →

  • 准备数据

    为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example

    来自:帮助中心

    查看更多 →

  • 准备数据

    为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example

    来自:帮助中心

    查看更多 →

  • 准备数据

    <r>50<r> 上传数据至OBS 使用 ModelArts Pro 进行应用开发时,您需要将数据上传至OBS桶中。 首先需要获取访问OBS权限,在未进行委托授权之前,无法使用此功能。您需要提前获得OBS授权,详情请见配置访问权限。 已创建用于存储数据的OBS桶及文件夹,且数据存储的OBS桶与ModelArts

    来自:帮助中心

    查看更多 →

  • 选择数据

    开发版本列表 新建数据集 在“数据选择”页面,单击“新建数据集”,右侧弹出“新建数据集”页面,根据数据存储位置和数据标注情况,按表1填写数据集基本信息,然后单击“确定”。 图3 新建数据集 表1 新建数据集参数说明 参数 说明 数据集名称 待新建的数据集名称。 描述 数据集简要描述。 数据集状态

    来自:帮助中心

    查看更多 →

  • 准备数据

    以换行符作为分隔符,每行数据代表一个样本数据,单个样本不能有分行显示,不支持换行。 基于已设计好的实体标签准备文本数据。每个实体标签需要准备20个及以上数据,为了训练出效果较好的模型,建议每个实体标签准备100个以上的数据。 本工作流只支持上传未标注数据,将待标注的内容放在一个文本文件内。

    来自:帮助中心

    查看更多 →

  • 选择数据

    开发版本列表 新建数据集 在“数据选择”页面,单击“新建数据集”,右侧弹出“新建数据集”页面,根据数据存储位置和数据标注情况,按表1填写数据集基本信息,然后单击“确定”。 图3 新建数据集 表1 新建数据集参数说明 参数 说明 数据集名称 待新建的数据集名称。 描述 数据集简要描述。 数据集状态

    来自:帮助中心

    查看更多 →

  • 选择数据

    新建训练数据集 在“数据选择”页面,单击“新建训练数据集”,右侧弹出“新建数据集”页面,根据数据存储位置和数据标注情况,按表1填写数据集基本信息,然后单击“确定”。 图3 新建数据集 表1 新建训练数据集参数说明 参数 说明 数据集名称 待新建的数据集名称。 描述 数据集简要描述。

    来自:帮助中心

    查看更多 →

  • 准备数据

    场景尽量相似。 为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 每一类数据尽量多,尽量均衡。每个分类标签需要准备20个数据以上,为了训练出效果较好的模型,建议每个分类标签准备200个以上的数据。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。 ├─dataset-import-example

    来自:帮助中心

    查看更多 →

  • 选择数据

    新建训练数据集 在“数据选择”页面,单击“新建训练数据集”,右侧弹出“新建数据集”页面,根据数据存储位置和数据标注情况,按表1填写数据集基本信息,然后单击“确定”。 图3 新建数据集 表1 新建训练数据集参数说明 参数 说明 数据集名称 待新建的数据集名称。 描述 数据集简要描述。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了