企业物联网分会场

构建万物互联智能世界,物联网流量服务低至1折,设备上云包年71折起

 

    AIoT量化投资 更多内容
  • Delete轻量化删除表数据

    Delete轻量化删除表数据 本章节主要介绍轻量化delete删除表数据的SQL基本语法和使用说明。 本章节仅适用于 MRS 3.3.0及之后版本。 基本语法 DELETE FROM [db.]table [ON CLUSTER cluster] WHERE expr 使用示例 建表:

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化工具转换权重

    使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化量化方法:W4A16

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    per-tensor+per-head静态量化场景 如需使用该场景量化方法,请自行准备kv-cache量化系数,格式和per-tensor静态量化所需的2. 抽取kv-cache量化系数生成的json文件一致,只需把每一层的量化系数修改为列表,列表的长度为kv的头数,列表中每一个值代表每一个kv头使用的量化系数。内容示例如下:

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化工具转换权重

    使用AWQ量化工具转换权重 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化量化方法为per-group。 Step1 模型量化

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表1。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。

    来自:帮助中心

    查看更多 →

  • 蜂云轻量化云监控平台功能

    蜂云轻量化云监控平台功能 蜂云轻量化云监控平台主要由云视频基座、智慧巡检、算法中心组成并对外提供服务, 具体功能模块详见下方平台首页。 图1 监控平台功能 父主题: 实施步骤

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化工具转换权重

    --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化工具转换权重

    --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3

    来自:帮助中心

    查看更多 →

  • 使用SmoothQuant量化工具转换权重

    --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。 --per-channel:权重量化方法,如果指定则为per-channel粒度量化,否则为per-tensor粒度量化。 启动smoothQuant量化服务。 参考Step3

    来自:帮助中心

    查看更多 →

  • 配置矢量化读取ORC数据

    并且文件中的数据尽可能的压缩来降低存储空间的消耗。矢量化读取ORC格式的数据能够大幅提升ORC数据读取性能。在Spark2.3版本中,SparkSQL支持矢量化读取ORC数据(这个特性在Hive的历史版本中已经得到支持)。矢量化读取ORC格式的数据能够获得比传统读取方式数倍的性能提升。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见表3。

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化工具转换权重

    使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化量化方法:W4A16 per-group/per-channel

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。

    来自:帮助中心

    查看更多 →

  • 使用llm-compressor工具量化

    使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库:

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    per-tensor+per-head静态量化场景 如需使用该场景量化方法,请自行准备kv-cache量化系数,格式和per-tensor静态量化所需的2. 抽取kv-cache量化系数生成的json文件一致,只需把每一层的量化系数修改为列表,列表的长度为kv的头数,列表中每一个值代表每一个kv头使用的量化系数。内容示例如下:

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。

    来自:帮助中心

    查看更多 →

  • 使用AWQ量化工具转换权重

    使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化量化方法:W4A16

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。

    来自:帮助中心

    查看更多 →

  • 使用kv-cache-int8量化

    使用kv-cache-int8量化 kv-cache-int8是实验特性,在部分场景下性能可能会劣于非量化。当前支持per-tensor静态量化,支持kv-cache-int8量化和FP16、BF16、AWQ、smoothquant的组合。 kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了