云数据库 RDS for MySQL

 

云数据库 RDS for MySQL拥有即开即用、稳定可靠、安全运行、弹性伸缩、轻松管理、经济实用等特点,让您更加专注业务发展。

 
 

    mysqlinor实现原理 更多内容
  • MemArtsCC基本原理

    MemArtsCC基本原理 MemArtsCC是一个分布式计算侧缓存系统。计算任务运行在计算集群的虚拟机(Virtual Machine, VM)上,数据存储在远端的对象存储(Object Storage Service, OBS)集群中。由于远端OBS的数据访问速度限制,VM上

    来自:帮助中心

    查看更多 →

  • Doris基本原理

    Key唯一性约束。因此,引入了Unique数据模型。 读时合并 Unique模型的读时合并实现完全可以用Aggregate模型中的REPLACE方式替代,其内部的实现方式和数据存储方式也完全一样。 写时合并 Unique模型的写时合并实现,不同于Aggregate模型,查询性能更接近于Duplicate

    来自:帮助中心

    查看更多 →

  • API实现

    API实现 创建后端

    来自:帮助中心

    查看更多 →

  • 实现示例

    实现示例 调用时请按照实际的cc-gateway地址修改样例: https://ip:port/agentgateway 其中,ip为CC-Gateway 服务器 地址,port为CC-Gateway服务器的HTTPS端口号。 WORKNO为座席工号,PASSWORD为座席密码,PHONENUMBER为座席软电话号码。

    来自:帮助中心

    查看更多 →

  • 实现会签

    下一个任务。 通过并行审批,可以快速的实现会签功能。可以将结果触发方式选择为“等待所有投票完成触发投票结果”,在这种投票触发方式下,将需要所有被分配了当前任务的用户完成相应的任务后才能推动工作流流程,即实现了会签功能。 父主题: 深入了解用户任务

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 HPA工作原理 HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩的控制器,HPA周期性检查Pod的度量数据,计算满足HPA资源所配置的目标数值所需的副本数量,进而调整目标资源(如Deployment)的replicas字段。

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 CCE支持多种工作负载伸缩方式,策略对比如下: 表1 弹性伸缩策略对比 伸缩策略 HPA策略 CronHPA策略 CustomedHPA策略 VPA策略 AHPA策略 策略介绍 Kubernetes中实现POD水平自动伸缩的功能,即Horizontal Pod Autoscaling。

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM 将根据源端的字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时的字段类型映射 CDM在 数据仓库 服务(Data Warehouse Service,简称DWS)中自动建表时,DWS的表与源表的字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • HBase基本原理

    HBase基本原理 数据存储使用HBase来承接,HBase是一个开源的、面向列(Column-Oriented)、适合存储海量非结构化数据或半结构化数据的、具备高可靠性、高性能、可灵活扩展伸缩的、支持实时数据读写的分布式存储系统。更多关于HBase的信息,请参见:https://hbase

    来自:帮助中心

    查看更多 →

  • Hive基本原理

    Hive基本原理 Hive是建立在Hadoop上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。Hive定义了简单的类SQL查询语言,称为HQL,它允许熟悉SQL的用户查询数据。

    来自:帮助中心

    查看更多 →

  • Kafka基本原理

    Group1与Consumer Group2中。 关于Kafka架构和详细原理介绍,请参见:https://kafka.apache.org/24/documentation.html。 Kafka原理 消息可靠性 Kafka Broker收到消息后,会持久化到磁盘,同时,To

    来自:帮助中心

    查看更多 →

  • HetuEngine基本原理

    HetuEngine提供了统一标准SQL实现跨源协同分析,简化跨源分析操作。 图2 HetuEngine跨源功能示意 HetuEngine跨域功能简介 HetuEngine提供统一标准SQL对分布于多个地域(或数据中心)的多种数据源实现高效访问,屏蔽数据在结构、存储及地域上的差异,实现数据与应用的解耦。

    来自:帮助中心

    查看更多 →

  • 内网采集权限与原理

    件进行交互,实现数据的采集。 容器采集 权限要求:需要管理员级别权限的账号导出包含必要访问凭证的文件。 采集原理:利用kspider工具进行数据采集。 vCenter采集 权限要求:需要管理员账号,该账号应具备对vCenter环境中所有虚拟机的完全访问权限。 采集原理:通过VSphere

    来自:帮助中心

    查看更多 →

  • ClickHouse基本原理

    ClickHouse利用CPU的SIMD指令实现了向量化执行。SIMD的全称是Single Instruction Multiple Data,即用单条指令操作多条数据,通过数据并行以提高性能的一种实现方式 ( 其他的还有指令级并行和线程级并行 ),它的原理是在CPU寄存器层面实现数据的并行操作。 关系模型与SQL查询

    来自:帮助中心

    查看更多 →

  • IoTDB基本原理

    IoTDB基本原理 IoTDB(物联网数据库)是一体化收集、存储、管理与分析物联网时序数据的软件系统。 Apache IoTDB采用轻量式架构,具有高性能和丰富的功能。 IoTDB从存储上对时间序列进行排序,索引和chunk块存储,大大的提升时序数据的查询性能。通过Raft协议,

    来自:帮助中心

    查看更多 →

  • Ranger基本原理

    Ranger基本原理 Apache Ranger提供一个集中式安全管理框架,提供统一授权和统一审计能力。它可以对整个Hadoop生态中如HDFS、Hive、HBase、Kafka、Storm等进行细粒度的数据访问控制。用户可以利用Ranger提供的前端WebUI控制台通过配置相关策略来控制用户对这些组件的访问权限

    来自:帮助中心

    查看更多 →

  • ZooKeeper基本原理

    ZooKeeper基本原理 ZooKeeper简介 ZooKeeper是一个分布式、高可用性的协调服务。在大数据产品中主要提供两个功能: 帮助系统避免单点故障,建立可靠的应用程序。 提供分布式协作服务和维护配置信息。 ZooKeeper结构 ZooKeeper集群中的节点分为三种

    来自:帮助中心

    查看更多 →

  • 实现Operator

    实现Operator 定义API 实现Controller 生成代码和资源描述文件 父主题: 开发Operator

    来自:帮助中心

    查看更多 →

  • Controller实现

    Controller实现 修改controllers/hwfka_controller.go文件为如下内容: func (r *HwfkaReconciler) Reconcile(ctx context.Context, req ctrl.Request) (ctrl.Result

    来自:帮助中心

    查看更多 →

  • 实现AR导航

    实现AR导航 概述 开发指导 注意事项 父主题: WebARSDK使用手册

    来自:帮助中心

    查看更多 →

  • CronFederatedHPA工作原理

    CronFederatedHPA工作原理 CronFederatedHPA的工作原理如图1。创建CronFederatedHPA策略时,可以设定一个具体的时间,基于设定的时间调整HPA策略的最大和最小Pod数,也可以直接定时调整工作负载中的Pod数量。 图1 CronFederatedHPA工作原理 单独使用CronFederatedHPA

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了