CPU更擅长机器学习模型的训练 更多内容
  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时数据表,记录机器学习模型配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • ModelArts支持哪些AI框架?

    ModelArts支持哪些AI框架? ModelArts开发环境Notebook、训练作业、模型推理(即AI应用管理和部署上线)支持AI框架及其版本,不同模块呈现方式存在细微差异,各模块支持AI框架请参见如下描述。 统一镜像列表 ModelArts提供了ARM+Ascend规格统一镜像,包括MindS

    来自:帮助中心

    查看更多 →

  • 方案概述

    该解决方案基于 AI开发平台 ModelArts为用户提供了一个快速、便捷和可靠方式,实现对电池、电机和电控数据预测分析。适用于电池、电机、电控等数据预测分析场景,可以帮助企业更好了解产品性能,从而更好进行生产和研发。 方案架构 该解决方案基于AI开发平台ModelArts,

    来自:帮助中心

    查看更多 →

  • 方案概述

    使模型开发和训练过程更加便捷和高效。 开源和定制化 该解决方案是开源,用户可以免费用于商业用途,并且还可以在源码基础上进行定制化开发。 一键部署 一键轻松部署,即可完成 函数工作流 FunctionGraph,对象存储服务 OBS等资源发放,帮助用户轻松搭建汽车价值评估解决方案。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    XGBoost 学习率 控制权重更新幅度,以及训练速度和精度。取值范围为0~1小数。 树数量 定义XGBoost算法中决策树数量,一个样本预测值是多棵树预测值加权和。取值范围为1~50整数。 树深度 定义每棵决策树深度,根节点为第一层。取值范围为1~10整数。 切分点数量

    来自:帮助中心

    查看更多 →

  • 创建工程

    创建联邦学习工程,编写代码,进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例基础模型包。 在联邦学习部署服务创建联邦学习实例时,将“基础模型配置”选择为“从NAIE平台中导入”,自动匹配模型训练服务联邦学习工程及其训练任务和模型包。 创建联邦学习工程步骤如下。

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    域感知因子分解机是因子分解机改进版本,因子分解机每个特征对其他域隐向量都一致,而域感知因子分解机每个特征对其他每个域都会学习一个隐向量,能够达到更高精度,但也容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达学习,同时学习高阶和

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定方法和标准,来评测一个模型预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 创建超参优化服务

    超参优化任务详细信息:最优超参组合模型评分、训练耗时、参数取值,以及超参优化任务参数信息。 评分图:在图表中显示每次迭代训练得到模型评分。 超参图:在图表中显示每次迭代训练超参取值及对应模型评分。 试验时长图:在图表中显示每次迭代训练超参取值及对应训练时长。 父主题:

    来自:帮助中心

    查看更多 →

  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用流水线工具,核心是将完整机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成效率。 ModelArts

    来自:帮助中心

    查看更多 →

  • 基本概念

    在旧版体验式开发模式下,模型训练服务支持特征操作有重命名、归一化、数值化、标准化、特征离散化、One-hot编码、数据变换、删除列、选择特征、卡方检验、信息熵、新增特征、PCA。对应JupyterLab交互式开发模式,是界面右上角图标中“数据处理”菜单下面的数据处理算子。 模型包 将模型

    来自:帮助中心

    查看更多 →

  • 模型选择

    单击“模型选择”代码框左侧图标,运行代码。 运行结果如下所示: 特征推荐:学件推荐特征,除了一些通用特征(最值、均值等),还有一部分是专门为类似KPI做异常检测效果比较好特征。通常采用滑窗方式做异常检测。目前所有窗口长度,是根据数据周期性、样本数、周期个数等数据特点推荐。窗口长度

    来自:帮助中心

    查看更多 →

  • 没有模型的问答和基于标注数据训练了模型的区别

    没有模型问答和基于标注数据训练模型区别 训练模型会将问答进行优化训练得到最佳回答效果,没有模型问答只是基于标准问和答案匹配结果。 父主题: 智能问答机器

    来自:帮助中心

    查看更多 →

  • 排序策略

    数值稳定常量:为保证数值稳定而设置一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同参数调整不同学习率,对频繁变化参数以更小步长进行更新,而稀疏参数以更大步长进行更新。 学习率:优化算法参数,决定优化器在最优方向上前进步长参数。默认0.001。 初

    来自:帮助中心

    查看更多 →

  • 文生视频模型训练推理

    文生视频模型训练推理 CogVideoX模型基于DevServer适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于DevServer适配PyTorch NPU训练推理指导(6.3.910) Open-Sora-Plan1.0基于DevServer适配PyTorch

    来自:帮助中心

    查看更多 →

  • AIGC模型训练推理

    SDXL基于DevServer适配PyTorch NPUFinetune训练指导(6.3.905) SDXL基于DevServer适配PyTorch NPULoRA训练指导(6.3.905) SD1.5基于DevServer适配PyTorch NPU Finetune训练指导(6.3.904) Ope

    来自:帮助中心

    查看更多 →

  • 数字人模型训练推理

    数字人模型训练推理 Wav2Lip推理基于DevServer适配PyTorch NPU推理指导(6.3.907) Wav2Lip训练基于DevServer适配PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 华为HiLens支持的模型必须是ModelArts训练出的模型吗?

    暂不支持导入ModelArts中“自动学习训练模型。 华为HiLens 只能导入ModelArts中训练模型文件,不能导入ModelArts模型。 本地训练模型 导入自定义模型前,需要将自定义模型上传到OBS服务,非“.om”格式模型上传文件包含caffe模型文件“.caffemodel”和“

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    如何调整训练参数,使盘古大模型效果最优 模型微调参数选择没有标准答案,不同场景,有不同调整策略。一般微调参数影响会受到以下几个因素影响: 目标任务难度:如果目标任务难度较低,模型能较容易学习知识,那么少量训练轮数就能达到较好效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。

    来自:帮助中心

    查看更多 →

  • ModelArts训练好后的模型如何获取?

    ModelArts训练好后模型如何获取? 使用自动学习产生模型只能在ModelArts上部署上线,无法下载至本地使用。 使用自定义算法或者订阅算法训练生成模型,会存储至用户指定OBS路径中,供用户下载。 父主题: 功能咨询

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    取值范围:字符型,需要符合数据属性名命名规范。 attribute_name 在监督学习任务中训练模型目标列名(可进行简单表达式处理)。 取值范围:字符型,需要符合数据属性名命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了