AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    AI训练模型原理 更多内容
  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • 训练科学计算大模型

    训练科学计算大模型 科学计算大模型训练流程与选择建议 创建科学计算大模型训练任务 查看科学计算大模型训练状态与指标 发布训练后的科学计算大模型 管理科学计算大模型训练任务 科学计算大模型训练常见报错与解决方案 父主题: 开发盘古科学计算大模型

    来自:帮助中心

    查看更多 →

  • 文生视频模型训练推理

    文生视频模型训练推理 CogVideoX1.5 5b模型基于DevServer适配PyTorch NPU全量训练指导(6.3.912) CogVideoX模型基于DevServer适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于DevServer适配PyTorch

    来自:帮助中心

    查看更多 →

  • 文生图模型训练推理

    5基于DevServer适配PyTorch NPU Finetune训练指导(6.3.904) Open-Clip基于DevServer适配PyTorch NPU训练指导 AIGC工具tailor使用指导

    来自:帮助中心

    查看更多 →

  • 数字人模型训练推理

    数字人模型训练推理 Wav2Lip推理基于DevServer适配PyTorch NPU推理指导(6.3.907) Wav2Lip训练基于DevServer适配PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • AI原生应用引擎训练好后的模型如何获取?

    AI原生应用引擎训练好后的模型如何获取? 使用模型微调训练模型后的新模型只能通过模型部署(创建模型服务)上线,无法下载至本地使用。 父主题: AI原生应用引擎

    来自:帮助中心

    查看更多 →

  • 训练业务迁移到昇腾设备场景介绍

    务同样使用这些开源模型,建议直接使用ModelArts提供的模型运行指导,其余场景再考虑使用本指导自行迁移和调优。 迁移流程 模型迁移主要指将开源社区中实现过的模型或客户自研模型迁移到昇腾AI处理器上,需要保证模型已经在CPU/GPU上运行成功。迁移到昇腾AI处理器的主要流程如下图所示。

    来自:帮助中心

    查看更多 →

  • 创建模型训练工程

    创建模型训练工程 创建工程 编辑训练代码(简易编辑器) 编辑训练代码(WebIDE) 模型训练 MindSpore样例 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    为每个模型提供针对性的投机模型: Eagle的模型大小及结构,与基模型的某一层完全相同,这使得它的大小远远小于其基模型。解决了对于部分原始LLM模型,找不到合适的投机模型的问题。 投机小模型训练端到端示例 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并

    来自:帮助中心

    查看更多 →

  • eagle投机小模型训练

    eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的

    来自:帮助中心

    查看更多 →

  • 分布式训练功能介绍

    创建多机多卡的分布式训练(DistributedDataParallel):介绍多机多卡数据并行分布式训练原理和代码改造点。 示例:创建DDP分布式训练(PyTorch+GPU):提供了分布式训练调测具体的代码适配操作过程和代码示例。 示例:创建DDP分布式训练(PyTorch+N

    来自:帮助中心

    查看更多 →

  • 如何回到模型训练服务首页?

    如何回到模型训练服务首页? 用户离开模型训练服务首页,如果需要回到首页,请单击界面左上角的“模型训练”,从下拉框中选择“模型训练”。 父主题: 模型训练服务首页

    来自:帮助中心

    查看更多 →

  • 各个模型训练前文件替换

    各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型训练开始前,针对falcon-11B模型中的tokenizer文件

    来自:帮助中心

    查看更多 →

  • LLM大语言模型训练推理

    主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.905) 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.905) 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905) 主流开源大模型基于Standard适配PyTorch

    来自:帮助中心

    查看更多 →

  • 各个模型训练前文件替换

    各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型训练开始前,针对falcon-11B模型中的tokenizer文件

    来自:帮助中心

    查看更多 →

  • 各个模型训练前文件替换

    各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型训练开始前,针对falcon-11B模型中的tokenizer文件

    来自:帮助中心

    查看更多 →

  • 内容审核模型训练推理

    内容审核 模型训练推理 Bert基于DevServer适配MindSpore Lite推理指导(6.3.910) Yolov8基于DevServer适配MindSpore Lite推理指导(6.3.909) Paraformer基于DevServer适配PyTorch NPU推理指导(6

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练模型达到目标后,再执行模型部署的操作。

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    后等待工作流按顺序进入训练节点。 模型将会自动进入训练,无需人工介入,训练时间相对较长,建议您耐心等待。如果关闭或退出此页面,系统仍然在执行训练操作。 在“文本分类”节点中,待训练状态由“运行中”变为“运行成功”,即完成模型的自动训练。 图2 运行成功 训练完成后,您可以单击文本

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了