AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    ai模型训练可视化 更多内容
  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • eagle投机小模型训练

    eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的

    来自:帮助中心

    查看更多 →

  • eagle 投机小模型训练

    eagle 投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • 分布式模型训练

    分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题:

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard训练模型

    使用ModelArts Standard训练模型 模型训练使用流程 准备模型训练代码 准备模型训练镜像 创建调试训练作业 创建算法 创建生产训练作业 分布式模型训练 模型训练存储加速 增量模型训练 自动模型优化(AutoSearch) 模型训练高可靠性 管理模型训练作业

    来自:帮助中心

    查看更多 →

  • 训练科学计算大模型

    训练科学计算大模型 科学计算大模型训练流程与选择建议 创建科学计算大模型训练任务 查看科学计算大模型训练状态与指标 发布训练后的科学计算大模型 管理科学计算大模型训练任务 科学计算大模型训练常见报错与解决方案 父主题: 开发盘古科学计算大模型

    来自:帮助中心

    查看更多 →

  • 功能介绍

    超参数,提升无代码模型开发效率。 图13 网络结构及模型参数配置 图14 网络结构及模型参数配置2 模型训练 模型训练多维度可视化监控,包括训练精度/损失函数曲线、GPU使用率、训练进度、训练实时结果、训练日志等。 图15 训练指标和中间结果可视化 图16 训练过程资源监控 支持

    来自:帮助中心

    查看更多 →

  • 数字人模型训练推理

    数字人模型训练推理 Wav2Lip推理基于DevServer适配PyTorch NPU推理指导(6.3.907) Wav2Lip训练基于DevServer适配PyTorch NPU训练指导(6.3.907)

    来自:帮助中心

    查看更多 →

  • 文生视频模型训练推理

    文生视频模型训练推理 CogVideoX模型基于DevServer适配PyTorch NPU全量训练指导(6.3.911) Open-Sora1.2基于DevServer适配PyTorch NPU训练推理指导(6.3.910) Open-Sora-Plan1.0基于DevServer适配PyTorch

    来自:帮助中心

    查看更多 →

  • 在JupyterLab中使用MindInsight可视化作业

    训练看板是MindInsight的可视化组件的重要组成部分,而训练看板的标签包含:标量可视化、参数分布图可视化、计算图可视化、数据图可视化、图像可视化和张量可视化等。 更多功能介绍请参见MindSpore官网资料:查看训练看板中可视的数据。 关闭MindInsight 关闭MindInsight方式如下单击

    来自:帮助中心

    查看更多 →

  • 管理AI Gallery模型

    管理AI Gallery模型 编辑模型介绍 资产发布上架后,准确、完整的资产介绍有助于提升资产的排序位置和访问量,能更好的支撑用户使用该资产。 在模型详情页,选择“模型介绍”页签,单击右侧“编辑介绍”。 编辑模型基础设置和模型描述。 表1 模型介绍的参数说明 参数名称 说明 基础设置

    来自:帮助中心

    查看更多 →

  • 模型训练新建模型训练工程的时候,选择通用算法有什么作用?

    模型训练新建模型训练工程的时候,选择通用算法有什么作用? 通用算法目前包括:分类算法、拟合算法、聚类算法、其他类型。用户选择不同的通用算法类型,并勾选“创建入门模型训练代码”,便可以自动生成对应类型的代码模版。 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • 什么是ModelArts Pro

    可视化界面:全流程可视化。 全生命周期:从数据标注、模型训练、服务部署、增量更新的全生命周期。 专属定制:根据场景数据自定制模型 。 高效的行业算法 多行业:积累10+行业/场景的预训练模型。 高精度:大部分模型的准确率高于90%。 少数据:训练所需的数据量更少。 智能标注:提升标注效率。 极致性能 依托ModelArts

    来自:帮助中心

    查看更多 →

  • 各个模型训练前文件替换

    各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型训练开始前,针对falcon-11B模型中的tokenizer文件

    来自:帮助中心

    查看更多 →

  • 各个模型训练前文件替换

    各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型训练开始前,针对falcon-11B模型中的tokenizer文件

    来自:帮助中心

    查看更多 →

  • 训练物体检测模型

    后等待工作流按顺序进入训练节点。 模型将会自动进入训练,无需人工介入,训练时间相对较长,建议您耐心等待。如果关闭或退出此页面,系统仍然在执行训练操作。 在“物体检测”节点中,待训练状态由“运行中”变为“运行成功”,即完成模型的自动训练。 图2 运行成功 训练完成后,您可以单击物体

    来自:帮助中心

    查看更多 →

  • 如何回到模型训练服务首页?

    如何回到模型训练服务首页? 用户离开模型训练服务首页,如果需要回到首页,请单击界面左上角的“模型训练”,从下拉框中选择“模型训练”。 父主题: 模型训练服务首页

    来自:帮助中心

    查看更多 →

  • LLM大语言模型训练推理

    PyTorch NPU训练指导(6.3.911) 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.911) 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.911) 主流开源大模型基于Lite Cluster适配PyTorch

    来自:帮助中心

    查看更多 →

  • 各个模型训练前文件替换

    各个模型训练前文件替换 在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型训练开始前,针对falcon-11B模型中的tokenizer文件

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了