华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习微调 更多内容
  • 什么情况下需要微调

    什么情况下需要微调 微调的目的是为了提升模型在某个特定任务或领域的表现。在大多数场景下,通过Prompt工程,通用模型也能给出比较满意的回答。但如果您的场景涉及以下几种情况,则建议采用微调的手段来解决: 目标任务依赖垂域背景知识:通用模型学习到的知识大部分都是来自互联网上的开源数

    来自:帮助中心

    查看更多 →

  • 数据量很少,可以微调吗

    数据量很少,可以微调吗 不同规格的模型对微调的数据量都有相应要求。 如果您准备用于微调的数据量很少,无法满足最小的量级要求,那么不建议您直接使用该数据进行微调,否则可能会存在如下问题: 过拟合:当微调数据量很小时,为了能充分学习这些数据的知识,可能会训练较多的轮次,因而模型会过分

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 使用AI Gallery微调大师训练模型

    迭代周期记录LOSS值。 微调产物说明 模型微调完成后,会得到一个新模型,即微调产物。 在微调大师页面,单击操作列的“查看模型”跳转到微调获得的新模型的详情页面。选择“模型文件”页签可以查看微调产物。各文件说明请参见表3。 图1 微调产物示例 表3 微调产物说明 文件名 文件说明

    来自:帮助中心

    查看更多 →

  • 基于微调数据集进行模型微调

    基于微调数据集进行模型微调 创建微调数据集 对微调数据集进行数据标注 创建模型微调任务 父主题: 管理模型

    来自:帮助中心

    查看更多 →

  • 典型训练问题和优化策略

    典型训练问题和优化策略 什么情况下需要微调 什么情况下不建议微调 数据量很少,可以微调吗 数据量足够,但质量较差,可以微调吗 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 如何调整训练参数,使模型效果最优 如何判断训练状态是否正常 如何评估微调后的模型是否正常 如何调整推理参数,使模型效果最优

    来自:帮助中心

    查看更多 →

  • 创建自监督微调训练任务

    ,批大小还与学习率相关。学习率是指每次更新参数时,沿着梯度方向移动的步长。一般来说,批大小和学习率成正比。如果批大小增大,学习率也相应增大;如果批大小减小,那么学习率也应减小。 训练轮数 1 1~50 完成全部训练数据集训练的次数。 学习率 0.0001 0~1 学习率用于控制每

    来自:帮助中心

    查看更多 →

  • Standard模型训练

    Standard模型训练提供容器化服务和计算资源管理能力,负责建立和管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用和极致性能的深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。 ModelArts Standard模型

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b LORA微调为例,执行脚本0_pl_lora_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    GeneralPretrainHandler:使用预训练的alpaca数据集。 GeneralInstructionHandler:使用微调的alpaca数据集。 MOSSMultiTurnHandler:使用微调的moss数据集。 MBS 4 表示流水线并行中一个micro batch所处理的样本量。在流水线并行

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b LORA微调为例,执行脚本0_pl_lora_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中,具体参考代码上传至OBS和使用Notebook将OBS数据导入SFS Turbo。 Step1 在Notebook中修改训练超参配置 以llama2-13b LORA微调为例,执行脚本0_pl_lora_13b

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中,具体参考代码上传至OBS和使用Notebook将OBS数据导入SFS Turbo。 Step1 在Notebook中修改训练超参配置 以llama2-13b LORA微调为例,执行脚本0_pl_lora_13b

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    LoRA微调训练 步骤1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    GeneralPretrainHandler:使用预训练的alpaca数据集。 GeneralInstructionHandler:使用微调的alpaca数据集。 MOSSMultiTurnHandler:使用微调的moss数据集。 MBS 4 表示流水线并行中一个micro batch所处理的样本量。在流水线并行

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    LoRA微调训练 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    GeneralPretrainHandler:使用预训练的alpaca数据集。 GeneralInstructionHandler:使用微调的alpaca数据集。 MOSSMultiTurnHandler:使用微调的moss数据集。 MBS 4 表示流水线并行中一个micro batch所处理的样本量。在流水线并行

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 在Notebook中修改训练超参配置 以llama2-13b LORA微调为例,执行脚本0_pl_lora_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    LoRA微调训练 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。

    来自:帮助中心

    查看更多 →

  • LoRA微调训练

    LoRA微调训练 步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了