GPU加速云服务器 GACS

 

GPU加速云服务器(GPU Accelerated Cloud Server, GACS)能够提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等

 
 

    深度学习gpu云 更多内容
  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    存。 图1 基于OBS+SFS Turbo的华为AI存储解决方案 方案优势 华为AI存储解决方案的主要优势如下表所示。 表1 华为AI存储解决方案的主要优势 序号 主要优势 详细描述 1 存算分离,资源利用率高 GPU/NPU算力和SFS Turbo存储解耦,各自按需扩容,资源利用率提升。

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 卸载GPU加速型ECS的GPU驱动

    卸载GPU加速型E CS GPU驱动 操作场景 当GPU加速 云服务器 需手动卸载GPU驱动时,可参考本文档进行操作。 GPU驱动卸载命令与GPU驱动的安装方式和操作系统类型相关,例如: Windows操作系统卸载驱动 Linux操作系统卸载驱动 Windows操作系统卸载驱动 以Windows

    来自:帮助中心

    查看更多 →

  • 创建GPU函数

    创建GPU函数 GPU函数概述 自定义镜像 方式创建GPU函数 定制运行时方式创建GPU函数 父主题: 创建函数

    来自:帮助中心

    查看更多 →

  • GPU调度概述

    GPU调度概述 工作负载支持使用节点GPU资源,GPU资源使用可以分为如下两种模式: GPU静态分配(共享/独享):按比例给Pod分配GPU显卡资源,支持独享(分配单张/多张显卡)和共享(部分显卡)方式。 GPU虚拟化:UCS On Premises GPU采用xGPU虚拟化技术

    来自:帮助中心

    查看更多 →

  • GPU故障处理

    GPU故障处理 前提条件 如需将GPU事件同步上报至AOM,集群中需安装云原生日志采集插件,您可前往AOM服务查看GPU插件隔离事件。 GPU插件隔离事件 当GPU显卡出现异常时,系统会将出现问题的GPU设备进行隔离,详细事件如表1所示。 表1 GPU插件隔离事件 事件原因 详细信息

    来自:帮助中心

    查看更多 →

  • 大数据分析

    时数据,需要运行越来越多的CPU资源来提供充足算力。采用按需实例会在成本可控上遇到较大挑战。 竞享实例的应用 客户通过使用竞享实例来降低用成本,并在预算范围内尽可能的扩大集群规模,提升业务效率。客户要面对的最大挑战是一定概率的实例终止情况,通过保留一定量的按需实例作为竞享实例的

    来自:帮助中心

    查看更多 →

  • 使用模型

    Online暂不支持GPU加速,建议安装tensorflow-cpu减小磁盘占用,并加快安装速度。 鲲鹏镜像暂时无法安装TensorFlow,敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型

    来自:帮助中心

    查看更多 →

  • 算法备案公示

    下述内容为MetaStudio服务提供的算法备案信息、基本原理、运行机制和目的意图等内容,以保障用户的知情权,方便用户更好的选择和使用MetaStudio服务。 华为MetaStudio分身数字人驱动算法 表1 分身数字人驱动算法 算法项 描述 算法名称 华为MetaStudio分身数字人驱动算法

    来自:帮助中心

    查看更多 →

  • GPU计算型

    GPU计算型 GPU计算单元包含的计算资源主要适用于政企用户部署GPU密集型业务到CloudPond上使用的场景,对应华为ECS的实例包含Pi系列,用户可根据机型规格情况选择对应的计算资源商品。具体规格请参考表1。 表1 GPU计算单元 名称 算力配置 描述 GPU计算单元-汇聚型-2Pi2

    来自:帮助中心

    查看更多 →

  • GPU相关问题

    GPU相关问题 日志提示"No CUDA-capable device is detected" 日志提示“RuntimeError: connect() timed out” 日志提示“cuda runtime error (10) : invalid device ordinal

    来自:帮助中心

    查看更多 →

  • GPU函数概述

    GPU函数概述 Serverless GPU是一种高度灵活、高效利用、按需分配GPU计算资源的新兴计算服务GPU能力Serverless化,通过提供一种按需分配的GPU计算资源,在一定范围内有效地解决原有GPU长驻使用方式导致的低资源利用率、高使用成本和低弹性能力等痛点问题。本文将介绍Serverless

    来自:帮助中心

    查看更多 →

  • 目标集群资源规划

    Turbo集群:基于云原生基础设施构建的云原生2.0容器引擎服务,具备软硬协同、网络无损、安全可靠和调度智能的优势,为用户提供一站式、高性价比的全新容器服务体验。支持裸金属节点。 CCE集群 *网络模型 VPC网络:采用VPC路由方式与底层网络深度整合,适用于高性能场景,节点数量受限于虚拟私有VPC的路由配额。 容

    来自:帮助中心

    查看更多 →

  • 调度概述

    使用Kubernetes默认GPU调度 GPU虚拟化 GPU虚拟化能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高GPU利用率。 GPU虚拟化 NPU调度

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 如何提升训练效率,同时减少与OBS的交互?

    如何提升训练效率,同时减少与OBS的交互? 场景描述 在使用ModelArts进行自定义深度学习训练时,训练数据通常存储在对象存储服务(OBS)中,且训练数据较大时(如200GB以上),每次都需要使用GPU资源池进行训练,且训练效率低。 希望提升训练效率,同时减少与 对象存储OBS 的交互。可通过如下方式进行调整优化。

    来自:帮助中心

    查看更多 →

  • 弹性伸缩概述

    够多的节点来调度新扩容的Pod,那么就需要为集群增加节点,从而保证业务能够正常提供服务。 弹性伸缩在CCE上的使用场景非常广泛,典型的场景包含在线业务弹性、大规模计算训练、深度学习GPU或共享GPU的训练与推理、定时周期性负载变化等。 CCE弹性伸缩 CCE的弹性伸缩能力分为如下两个维度:

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    案例参考: 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 从0制作自定义镜像用于创建训练作业(MindSpore+Ascend)

    来自:帮助中心

    查看更多 →

  • 管理GPU加速型ECS的GPU驱动

    管理GPU加速型ECS的GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动

    来自:帮助中心

    查看更多 →

  • 面向AI场景使用OBS+SFS Turbo的存储加速方案概述

    存。 图1 基于OBS+SFS Turbo的华为AI存储解决方案 方案优势 华为AI存储解决方案的主要优势如下表所示。 表1 华为AI存储解决方案的主要优势 序号 主要优势 详细描述 1 存算分离,资源利用率高 GPU/NPU算力和SFS Turbo存储解耦,各自按需扩容,资源利用率提升。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了