AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习随机森林模型 更多内容
  • AI开发基本流程介绍

    AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法

    来自:帮助中心

    查看更多 →

  • 方案概述

    方案概述 应用场景 在全球变暖与极端气象环境加剧的变化趋势下,森林火灾日益高发,对森林防火提出了更高的要求。华为云联合行业优秀伙伴,打造基于KooMap多源卫星数据组合、高精度森林火点识别算法和先进的云平台的森林防火解决方案,可全方位提升灾前预防、灾时发现、灾后评估全流程能力。 表1

    来自:帮助中心

    查看更多 →

  • 修订记录

    变换、优化模型训练、特征迁移增加迁移评估等,对应刷新JupyterLab开发平台。 模型训练新增创建联邦学习工程及其服务,对应新增创建联邦学习工程。 模型包支持对Jupyterlab环境归档的模型创建模型包、支持对特定模型包新建联邦学习实例、支持对已发布推理服务模型包更新发布推理服务,对应刷新模型管理。

    来自:帮助中心

    查看更多 →

  • 各个模型深度学习训练加速框架的选择

    各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D

    来自:帮助中心

    查看更多 →

  • Standard Workflow

    Workflow是开发者基于实际业务场景开发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts

    来自:帮助中心

    查看更多 →

  • 计费说明

    或者优化服务,基于脱敏数据,训练深度学习机器学习模型,形成相关的验证报告。普通场景工作量预计不超过18人天 600,000.00 每套 AI算法原型开发-专业版 对业务场景为复杂场景的企业或政府单位进行算法原型开发或者优化服务,基于脱敏数据,训练深度学习机器学习模型,形成相关

    来自:帮助中心

    查看更多 →

  • 应用场景

    本节介绍Fabric服务的主要应用场景。 数据工程 高效处理大规模数据,通过并行计算加速数据处理过程,例如数据清洗、转换和聚合。 分布式机器学习 Ray支持分布式训练和调优,可以用于处理大规模数据集和模型,使得模型训练更加高效。 大模型 使用大模型实现智能对话、自动摘要、机器翻译、文本分类、图像生成等任务。

    来自:帮助中心

    查看更多 →

  • 自动学习模型训练图片异常?

    自动学习模型训练图片异常? 使用自动学习的图像分类或物体检测算法时,标注完成的数据在进行模型训练后,训练结果为图片异常。针对不同的异常情况说明及解决方案参见表1。 表1 自动学习训练中图片异常情况说明(图像分类和物体检测) 序号 图片异常显示字段 图片异常说明 解决方案字段 解决方案说明

    来自:帮助中心

    查看更多 →

  • 模型评估

    模型评估 训练时的评估指标是用训练的数据集中随机采样的记录计算的,完成训练后企业A也可以使用其他的数据集对同一个模型进行多次的评估。单击“发起评估”选择训练参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 排序策略

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • 基本概念

    基本概念 AI引擎 可支持用户进行机器学习、深度学习模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 最新动态

    续特征选择、模型训练的数据集。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 ftrl:Follow The Regularized Leader 适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法。

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围:

    来自:帮助中心

    查看更多 →

  • 创建科学计算大模型训练任务

    用于定义权重衰减的系数。权重衰减是一种正则化技术,可以防止模型过拟合。取值需≥0。 学习率 用于定义学习率的大小。学习率决定了模型参数在每次更新时变化的幅度。如果学习率过大,模型可能会在最优解附近震荡而无法收敛。如果学习率过小,模型收敛的速度可能会非常慢。当batch_size减小时,学习率也应相应地线性减小。预训练时,默认值为:0

    来自:帮助中心

    查看更多 →

  • 给用户重置随机密码

    给用户重置随机密码 功能介绍 该接口用于给用户重置一个密码。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/users/{u

    来自:帮助中心

    查看更多 →

  • CREATE MODEL

    attribute_name 在监督学习任务中训练模型的目标列名(可进行简单的表达式处理)。 取值范围:字符型,需要符合数据属性名的命名规范。 subquery 数据源。 取值范围:字符串,符合数据库SQL语法。 hyper_parameter_name 机器学习模型的超参名称。 取值范围:

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: AI

    来自:帮助中心

    查看更多 →

  • ModelArts

    ModelArts不仅支持自动学习功能,还预置了多种已训练好的模型,同时集成了Jupyter Notebook,提供在线的代码开发环境。 业务开发者 使用自动学习构建模型 AI初学者 使用自定义算法构建模型 免费体验 ModelArts 免费体验CodeLab 自动学习 口罩检测(使用新版自动学习实现物体检测)

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了