AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习模型如何训练 更多内容
  • 访问模型训练服务

    用户也可以直接通过账号登录。首次登录后请及时修改密码,并定期修改密码。 单击“登录”,进入NAIE服务官网。 依次选择“AI服务 > AI服务 > 模型训练服务 > 模型训练服务”,进入模型训练服务介绍页面。 单击“进入服务”,进入模型训练服务页面。 父主题: 学件开发指南

    来自:帮助中心

    查看更多 →

  • 访问模型训练服务

    定期修改密码。 单击“登录”,进入NAIE服务官网。 依次选择“AI服务 > AI服务 > 模型训练服务 > 模型训练服务”,进入模型训练服务介绍页面。 单击“进入服务”,进入模型训练服务页面。 父主题: 使用模型训练服务快速训练算法模型

    来自:帮助中心

    查看更多 →

  • GS_OPT_MODEL

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: AI

    来自:帮助中心

    查看更多 →

  • 排序策略

    排序策略 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。排序模型可对LR、FM、FFM、DeepFM和PIN等模型进行训练,具体包括如下内容: 逻辑斯蒂回归-LR 因子分解机-FM 域感知因子分解机-FFM 深度网络因子分解机-DeepFM

    来自:帮助中心

    查看更多 →

  • 创建预测分析项目

    可自行选择您需要预测的列名。 标签列是预测模型的输出。模型训练步骤将使用全部信息训练预测模型,该模型以其他列的数据为输入,以标签列的预测值为输出。模型部署步骤将使用预测模型发布在线预测服务。 “输出路径” 选择自动学习数据输出的统一OBS路径。 说明: “输出路径”是存储自动学习在运行过程中所有产物的路径。

    来自:帮助中心

    查看更多 →

  • 订购模型训练服务

    输入租户名和密码,单击“登录”,进入NAIE服务官网。 首次登录后请及时修改密码,并定期修改密码。 依次选择“AI服务 > AI服务 > 模型训练服务 > 模型训练服务”,进入模型训练服务介绍页面。 单击“我要购买”,进入服务订购界面。 区域:为用户提供服务的华为云Region。请选择“华北-北京四”。

    来自:帮助中心

    查看更多 →

  • 订购模型训练服务

    输入租户名和密码,单击“登录”,进入NAIE服务官网。 首次登录后请及时修改密码,并定期修改密码。 依次选择“AI服务 > AI服务 > 模型训练服务 > 模型训练服务”,进入模型训练服务介绍页面。 单击“我要购买”,进入服务订购界面。 区域:为用户提供服务的华为云Region。请选择“华北-北京四”。

    来自:帮助中心

    查看更多 →

  • 模型训练服务首页

    模型训练服务首页 如何回到模型训练服务首页? 创建项目公开至组的参数是什么含义? 父主题: 常见问题

    来自:帮助中心

    查看更多 →

  • 训练NLP大模型

    训练NLP大模型 NLP大模型训练流程与选择建议 创建NLP大模型训练任务 查看NLP大模型训练状态与指标 发布训练后的NLP大模型 管理NLP大模型训练任务 NLP大模型训练常见报错与解决方案 父主题: 开发盘古NLP大模型

    来自:帮助中心

    查看更多 →

  • 准备模型训练镜像

    准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练训练作业的预置框架介绍

    来自:帮助中心

    查看更多 →

  • 训练预测分析模型

    训练预测分析模型 创建自动学习后,将会进行模型训练,得到预测分析的模型模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。

    来自:帮助中心

    查看更多 →

  • 创建NLP大模型训练任务

    “微调”。模型选择完成后,参考表1完成训练参数设置。 表1 NLP大模型微调参数说明 参数分类 训练参数 参数说明 训练配置 模型来源 选择“盘古大模型模型类型 选择“NLP大模型”。 训练类型 选择“微调”。 训练目标 全量微调:在模型有监督微调过程中,对大模型的全部参数进

    来自:帮助中心

    查看更多 →

  • GS

    GS_OPT_MODEL GS_OPT_MODEL是启用AiEngine执行计划时间预测功能时的数据表,记录机器学习模型的配置、训练结果、功能、对应系统函数、训练历史等相关信息。 分布式场景下提供此系统表,但AI能力不可用。 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    假设您有如下数据集(只展示部分数据),由于数据不够完整,如job、gender等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是多类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使盘古大模型效果最优

    很小或模型参数规模很大,可以使用较小的学习率,反之可以使用较大的学习率。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比

    来自:帮助中心

    查看更多 →

  • 无监督领域知识数据量无法支持增量预训练,如何进行模型学习

    无监督领域知识数据量无法支持增量预训练如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。 这里提供

    来自:帮助中心

    查看更多 →

  • 模型文件说明(训练)

    模型文件说明(训练) Octopus模型管理模块,支持用户上传模型,并将其用于模型评测、模型编译任务。如果需要将模型用于内置评测模板评测,除模型文件外,需另外包含推理启动文件: customer_inference.py 仅当需要使用内置评测指标计算时需要添加推理启动文件,文件名称可自定义,将该文件置于模型目录下。

    来自:帮助中心

    查看更多 →

  • 模型训练使用流程

    模型训练使用流程 AI模型开发的过程,称之为Modeling,一般包含两个阶段: 开发阶段:准备并配置环境,调试代码,使代码能够开始进行深度学习训练,推荐在ModelArts开发环境中调试。 实验阶段:调整数据集、调整超参等,通过多轮实验,训练出理想的模型,推荐在ModelArts训练中进行实验。

    来自:帮助中心

    查看更多 →

  • 智能问答机器人

    路数是什么?如何增加会话路数 是否支持提出一个问题得到多个回答 问答数据保留时间 如何修改机器人规格,不同版本机器人区别 如何删除机器人 智能问答机器人的回答规则是什么 如何查询机器人使用情况 如何使用问答语料导入模板 子账户导出数据受obs权限影响时怎么处理 新购买的机器人是否可以与旧机器人共享语料库

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现声音分类

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了