AI开发平台ModelArts 

ModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。

 
 

    机器学习常用数据集 更多内容
  • 概述

    文件管理 文件管理是 可信智能计算 服务提供的一项管理联邦学习模型文件的功能。参与方无需登录后台手动导入模型文件,通过该功能即可将模型文件上传到数据目录,并支持批量删除。在创建联邦学习作业时可以选到上传的脚本模型等文件,提高了易用性及可维护性。 使用场景:管理联邦学习作业所需的脚本、模型、权重文件。

    来自:帮助中心

    查看更多 →

  • 方案概述

    方案架构图 该解决方案会部署如下资源: 创建两个对象存储服务 OBS桶,一个用于存储训练数据集及ModelArts算法、推理脚本、配置文件、模型数据。另一个用于存储数据集数据集预测结果。 使用 AI开发平台 ModelArts,用于机器学习模型训练,预测故障分析结果。 使用 函数工作流 Fu

    来自:帮助中心

    查看更多 →

  • 方案概述

    方案架构图 该解决方案会部署如下资源: 创建两个对象存储服务 OBS桶,一个用于存储训练数据集及ModelArts算法、推理脚本、配置文件、模型数据;另一个用于存储数据集数据集预测结果。 使用AI开发平台ModelArts,用于机器学习模型训练,预测汽车价值评估结果。 使用函数工作流

    来自:帮助中心

    查看更多 →

  • 创建数据预处理作业

    假设您有如下数据集(只展示部分数据),由于数据不够完整,如job、gender等字段均存在一定程度的缺失。为了不让机器理解形成偏差、以达到机器学习的使用标准,需要基于对数据的理解,对数据进行特征预处理。例如: job字段是多类别的变量,其值0、1、2实际没有大小之分,一般会将该特征转换成向量,如值为0用向量[1

    来自:帮助中心

    查看更多 →

  • 基本概念

    AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。 在旧

    来自:帮助中心

    查看更多 →

  • 可信智能计算服务 TICS

    已发布区域:北京四、北京二 如何创建多方安全计算作业? 可信联邦学习作业 可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经也被称为联邦机器学习。 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情

    来自:帮助中心

    查看更多 →

  • 修订记录

    新增“异步推理”章节。 更新“发布推理服务”章节。 2020-11-30 优化创建联邦学习工程章节,加入在模型训练服务创建联邦学习工程和联邦学习服务的关系描述。 2020-09-30 数据集详情界面优化,更新新建数据集和导入数据。 模型训练章节,针对AutoML自动机器学习,输出场景化资料。 模型管理界面优化,更新模型管理。

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    账号下的所有 CTS 追踪器未追踪指定的OBS桶,视为“不合规” mrs-cluster-kerberos-enabled MRS 集群开启kerberos认证 mrs MRS集群未开启kerberos认证,视为“不合规” mrs-cluster-no-public-ip MRS集群未绑定弹性公网IP mrs

    来自:帮助中心

    查看更多 →

  • 模型评测

    模型评测 在机器学习中,通常需要使用一定的方法和标准,来评测一个模型的预测精确度。自动驾驶领域通常涉及目标检测、语义分割、车道线检测等类别,如识别车辆、行人、可行区域等对象。 评测脚本 评测任务 任务队列 评测对比 模型数据集支持 父主题: 训练服务

    来自:帮助中心

    查看更多 →

  • 产品术语

    管理侧权限是指一个租户在数据资产管理服务中具有Data Operation Engineer或Data Owner角色的用户,对于数据集服务具有发布(或下架)数据集的权限或是审批数据集发布(或下架)申请的权限,以及具有浏览、查询、订阅和下载已发布数据集的权限。 I IAM Identity

    来自:帮助中心

    查看更多 →

  • 创建模型微调任务

    优化算法在完整训练数据集上的工作轮数。 learning_rate 学习学习率是每一次迭代中梯度向损失函数最优解移动的步长。 weight_decay 权重衰减因子 对模型参数进行正则化的一种因子,可以缓解模型过拟合现象。 warmup_ratio 学习率热启动比例 学习率热启动参数

    来自:帮助中心

    查看更多 →

  • Hive常用常用配置参数

    exec.reducers.max Hive提交的MR任务中reducer的最大个数。 999 hive.server2.thrift.max.worker.threads HiveServer内部线程池,最大能启动的线程数量。 1000 hive.server2.thrift.min

    来自:帮助中心

    查看更多 →

  • 最新动态

    纵向联邦作业中支持对两方数据集进行样本对齐,在不泄露数据隐私的情况下计算出双方共有的数据,并将共有的数据作为后续特征选择、模型训练的数据集。 公测 创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本

    来自:帮助中心

    查看更多 →

  • 迁移学习

    迁移学习 如果当前数据集的特征数据不够理想,而此数据集的数据类别和一份理想的数据集部分重合或者相差不大的时候,可以使用特征迁移功能,将理想数据集的特征数据迁移到当前数据集中。 进行特征迁移前,请先完成如下操作: 将源数据集和目标数据集导入系统,详细操作请参见数据集。 创建迁移数据

    来自:帮助中心

    查看更多 →

  • 如何在DLI中运行复杂PySpark程序?

    k的融合机器学习相关的大数据分析程序。传统上,通常是直接基于pip把Python库安装到执行机器上,对于 DLI 这样的Serverless化服务用户无需也感知不到底层的计算资源,那如何来保证用户可以更好的运行他的程序呢? DLI服务在其计算资源中已经内置了一些常用机器学习的算法库(具体可以参考” 数据湖探索

    来自:帮助中心

    查看更多 →

  • 图片/音频标注介绍

    辅助标注工具。提供界面化数据查看、单点数据标注、保存标注结果、标注结果发布数据集等功能。可准确、高效、安全地完成各类型数据的标注任务,为客户提供专业的数据标注服务能力,助力客户高效开展算法模型训练与机器学习,快速提高AI领域竞争力。 图片/音频标注数据标注支持选择上传本地数据文件

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    一次训练所选取的样本数。 训练数据集切分数量 将整个数据集切分成多个子数据集,依次训练,每个epoch训练一个子数据集。 DeepFM DeepFM,结合了FM和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。 表2 深度网络因子分解机参数说明

    来自:帮助中心

    查看更多 →

  • 常用链接

    Huawei LiteOS 官网:liteos.orgHuawei LiteOS 论坛:https://bbs.huaweicloud.com/forum/forum-729-1.htmlHuawei LiteOS 开源代码:(码云)https://gitee.com/LiteOS/LiteOS;(github)https://githu

    来自:帮助中心

    查看更多 →

  • 常用示例

    请求一个指向新分配的numeric变量的指针 */ numeric* a = PGTYPESnumeric_new(); numeric* s = PGTYPESnumeric_new(); numeric* m =

    来自:帮助中心

    查看更多 →

  • 常用示例

    请求一个指向新分配的numeric变量的指针 */ numeric* a = PGTYPESnumeric_new(); numeric* s = PGTYPESnumeric_new(); numeric* m =

    来自:帮助中心

    查看更多 →

  • 常用示例

    请求一个指向新分配的numeric变量的指针 */ numeric* a = PGTYPESnumeric_new(); numeric* s = PGTYPESnumeric_new(); numeric* m =

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了