AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    机器学习 学习率lr 更多内容
  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • 最新动态

    功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级 在实际应用中,升级、回滚是一个常

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 ModelArts通过机器学习的方式帮助不具备算法开发能力的业务开发者实现算法的开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练的参数自动化选择和模型自动调优的自动学习功能,让零AI基础的业务开发者可快速完成模型的训练和部署。

    来自:帮助中心

    查看更多 →

  • 创建联邦学习工程

    创建联邦学习工程 创建工程 编辑代码(简易编辑器) 编辑代码(WebIDE) 模型训练 父主题: 模型训练

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 使用ModelArts Standard自动学习实现口罩检测 使用ModelArts Standard自动学习实现垃圾分类

    来自:帮助中心

    查看更多 →

  • 自动学习简介

    自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。

    来自:帮助中心

    查看更多 →

  • 排序策略-离线排序模型

    行综合考虑,依次计算出更新步长。 学习:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。

    来自:帮助中心

    查看更多 →

  • 适用于人工智能与机器学习场景的合规实践

    适用于人工智能与机器学习场景的合规实践 该示例模板中对应的合规规则的说明如下表所示: 表1 合规包示例模板说明 合规规则 规则中文名称 涉及云服务 规则描述 cce-cluster-end-of-maintenance-version CCE集群版本为处于维护的版本 cce CC

    来自:帮助中心

    查看更多 →

  • 新建联邦学习作业

    状态码: 200 新建联邦学习作业成功 { "job_id" : "c098faeb38384be8932539bb6fbc28d3" } 状态码 状态码 描述 200 新建联邦学习作业成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 删除联邦学习作业

    删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是

    来自:帮助中心

    查看更多 →

  • 精度调优前准备工作

    (计算空泡),从而提高训练效率。 学习预热 不同的学习调度器(决定什么阶段用多大的学习)有不同的学习调度相关超参,例如线性调度可以选择从一个初始学习lr-warmup-init开始预热。您可以选择多少比例的训练迭代步使用预热阶段的学习。不同的训练框架有不同的参数命名,需要结合代码实现设置对应的参数。

    来自:帮助中心

    查看更多 →

  • 排序策略

    行综合考虑,依次计算出更新步长。 学习:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。

    来自:帮助中心

    查看更多 →

  • 创建纵向联邦学习作业

    在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,单击“创建”。 图1 创建作业 在弹出的对话框中单击“纵向联邦”按钮,编辑“作业名称”等相关参数,完成后单击“确定”。 目前,纵向联邦学习支持“XGBoost”、“逻辑回归”、“F

    来自:帮助中心

    查看更多 →

  • 联邦学习作业管理

    联邦学习作业管理 查询联邦学习作业列表 父主题: 空间API

    来自:帮助中心

    查看更多 →

  • 查询设备自学习配置

    查询设备自学习配置 典型场景 中间网络配置使能自学习配置。 接口功能 查询设备自学习配置。 接口约束 该接口支持租户管理员和租户下北向接口管理访问,必须在用户会话建立后使用。 调用方法 GET URI /v1/performanceservice/flow/auto-learnings

    来自:帮助中心

    查看更多 →

  • SFT全参微调训练

    512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习设置。 MIN_LR 2.5e-6 最小学习设置。 SEQ_LEN

    来自:帮助中心

    查看更多 →

  • 提交排序任务API

    解机每个特征对其他每个域都会学习一个隐向量,能够达到更高的精度,但也更容易出现过拟合。FFM算法参数请参见域感知因子分解机。 深度网络因子分解机,结合了因子分解机和深度神经网络对于特征表达的学习,同时学习高阶和低阶特征组合,从而达到准确地特征组合学习,进行精准推荐。DEEPFM算法参数请参见深度网络因子分解机。

    来自:帮助中心

    查看更多 →

  • 保存横向联邦学习作业

    ague_id}/fl-jobs/{job_id} 保存横向联邦学习作业 响应示例 无 状态码 状态码 描述 200 保存横向联邦学习作业成功 401 操作无权限 500 内部服务器错误 父主题: 可信联邦学习作业管理

    来自:帮助中心

    查看更多 →

  • 执行横向联邦学习作业

    执行横向联邦学习作业 功能介绍 执行横向联邦学习作业 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id}/execute 表1 路径参数 参数 是否必选 参数类型 描述 project_id

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了