华为云11.11 AI&大数据分会场

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    关于深度学习(deep learning) 更多内容
  • 执行纵向联邦模型训练作业

    ModelParamVo 参数 是否必选 参数类型 描述 predict_threshold 否 Float 预测阈值,最小值0,最大值1 learning_rate 否 Float 学习率,最小值0,最大值1 batch_size 否 Integer 批大小,最小值1 epoch 否 Integer 迭代次数,最小值1

    来自:帮助中心

    查看更多 →

  • 保存纵向联邦作业

    MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate 否 String 纵向联邦算法学习率,最大长度16 label_dataset 否 String 标签数据集,最大长度100 label_agent

    来自:帮助中心

    查看更多 →

  • 功能介绍

    动校正。 自动静音检测 对输入语音流进行静音检测,识别效率和准确率更高。 产品优势 识别准确率高 采用最新一代 语音识别 技术,基于深度神经网络(Deep Neural Networks,简称DNN)技术,大大提高了抗噪性能,使识别准确率显著提升。 识别速度快 把语言模型、词典和声学

    来自:帮助中心

    查看更多 →

  • 学习空间

    学习空间 我的课堂 MOOC课程 我的考试

    来自:帮助中心

    查看更多 →

  • 关于

    关于 CA服务 CA代理服务 父主题: 系统

    来自:帮助中心

    查看更多 →

  • 学习任务

    学习任务 管理员以任务形式,把需要学习的知识内容派发给学员,学员在规定期限内完成任务,管理员可进行实时监控并获得学习相关数据。 入口展示 图1 入口展示 创建学习任务 操作路径:培训-学习-学习任务-【新建】 图2 新建学习任务 基础信息:任务名称、有效期是必填,其他信息选填 图3

    来自:帮助中心

    查看更多 →

  • 课程学习

    课程学习 前提条件 用户具有课程发布权限 操作步骤-电脑端 登录ISDP系统,选择“作业人员->学习管理->我的学习”并进入,查看当前可以学习的课程。 图1 我的学习入口 在“我的学习”的页面,点击每个具体的课程卡片,进入课程详情页面。可以按学习状态(未完成/已完成)、学习类型(

    来自:帮助中心

    查看更多 →

  • ALM-157163596 学习到动态mac地址个数达到上限

    BD ID。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MAC数目超过了限制MAC表规则中规定的最大MAC学习的数目。 处理步骤 正常提示信息,无需处理。 参考信息 无

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    使用混合精度格式,减少内存使用和计算需求。二者选其一 learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中用于保存模型的状态,以便在需要时恢复

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    使用混合精度格式,减少内存使用和计算需求。二者选其一 learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中用于保存模型的状态,以便在需要时恢复

    来自:帮助中心

    查看更多 →

  • ALM-257564679 学习到动态mac地址个数达到上限

    VLAN ID。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MAC数目超过了限制MAC表规则中规定的最大MAC学习的数目。 处理步骤 删除不需要的MAC,或者在VLAN视图下执行命令mac-address

    来自:帮助中心

    查看更多 →

  • 基本概念

    75个英文单词,1token≈1.5汉字。 自监督学习 自监督学习(Self-Supervised Learning,简称SSL)是一种机器学习方法,它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它

    来自:帮助中心

    查看更多 →

  • 自动学习

    自动学习 准备数据 模型训练 部署上线 模型发布

    来自:帮助中心

    查看更多 →

  • 查询联邦预测作业列表

    TRAIN训练,2.EVALUATE评估 hfl_platform_type String 联邦学习运行平台枚举值。LOCAL,MODEL_ARTS learning_rate String 纵向联邦算法学习率 algorithm_type String 纵向联邦算法类型枚举。 XG_BOOST

    来自:帮助中心

    查看更多 →

  • ALM-257564680 学习到动态mac地址个数达到上限

    L2IfPortName 接口名字。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MAC数目超过了限制MAC表规则中规定的最大MAC学习的数目。 处理步骤 删除不需要的MAC,或者在VLAN视图下执行命令mac-address

    来自:帮助中心

    查看更多 →

  • Yaml配置文件参数配置说明

    使用混合精度格式,减少内存使用和计算需求。二者选其一 learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中用于保存模型的状态,以便在需要时恢复

    来自:帮助中心

    查看更多 →

  • 关于

    关于 可查询OpenEye的版本信息,包括版本归属以及法律责任等信息。 图1 关于 父主题: 系统设置介绍

    来自:帮助中心

    查看更多 →

  • ALM-157163635 学习到动态MAC地址个数达到上限

    隧道对端IP地址。 MacLimitMaxMac 配置的可以学习到MAC的最大数。 对系统的影响 当超过MAC地址表项限制时,设备不再学习新的MAC表项。 可能原因 学习的动态MAC数目超过了限制MAC表规则中规定的最大MAC学习的数目。 处理步骤 1. 删除不需要的MAC,或者执行命令peer

    来自:帮助中心

    查看更多 →

  • 如何调整训练参数,使模型效果最优

    较小的学习率,反之可以使用较大的学习率。 如果您没有专业的调优经验,可以优先使用平台提供的默认值,再结合训练过程中模型的收敛情况动态调整。 学习率衰减比率(learning_rate_decay_ratio) 0~1 0.01~0.1 学习率衰减比率用于设置训练过程中的学习率衰减

    来自:帮助中心

    查看更多 →

  • 确认学习结果

    确认学习结果 HSS学习完白名单策略关联的 服务器 后,输出的学习结果中可能存在一些特征不明显的可疑进程需要再次进行确认,您可以手动或设置系统自动将这些可疑进程确认并分类标记为可疑、恶意或可信进程。 学习结果确认方式,在创建白名单策略时可设置: “学习结果确认方式”选择的“自动确认可

    来自:帮助中心

    查看更多 →

  • ALM-303046967 端口或VLAN学习到的MAC数达到设置的值

    告警类型 MacDynAddressLearnNum 当前学习到的mac数 MacLimitMaxMac 配置的可以学习到的最大数 L2IfPortName 接口名 对系统的影响 不再学习新的MAC。 可能原因 端口或VLAN学习到的MAC数达到设置的mac数。 处理步骤 请根据告警

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了