AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    用深度学习预测降雨量 更多内容
  • 场景描述

    机构的医疗数据提升乳腺癌预测模型的准确率。 进一步地,可根据该模型案例发散,构建老年人健康预测、高血压预测、失能早期预警模型等。 图1 乳腺癌预测研究应用场景示意 作业发起方通过计算节点上传数据、待训练模型的定义文件; 作业发起方配置 TICS 的横向联邦学习作业,启动训练; 模型参

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现垃圾分类

    在服务详情页,单击选择“预测”页签。 图4 上传预测图片 单击“上传”,选择一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图5 预测样例图 图6 查看预测结果 本案例中数据和算法生成的模型仅适用于教学模式,并不能应对复杂的预测场景。即生成的模型对预测图片有一定

    来自:帮助中心

    查看更多 →

  • 关联预测算法(Link Prediction)

    关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。

    来自:帮助中心

    查看更多 →

  • 成本和使用量预测

    成本和使用量预测 预测机制 预测的应用

    来自:帮助中心

    查看更多 →

  • 创建分子属性预测作业

    创建分子属性预测作业 功能介绍 创建分子属性预测作业。 URI POST /v1/{project_id}/eihealth-projects/{eihealth_project_id}/drug-jobs/admet 表1 路径参数 参数 是否必选 参数类型 描述 project_id

    来自:帮助中心

    查看更多 →

  • 训练声音分类模型

    被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 最新动态

    计算节点管理 2021年7月 序号 功能名称 功能描述 阶段 相关文档 1 联邦预测 新增支持联邦预测作业。联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 公测 联邦预测作业 2 联邦分析新增union all语法 安全多方计算MPC扩展语法支持union

    来自:帮助中心

    查看更多 →

  • 发布预测类数据集

    数据发布”,单击界面右上角“创建发布数据集”。 在“创建发布数据集”页面,选择“预测”类型的数据集。并根据训练任务场景选择“时序”、“回归分类”类型的数据。 图2 创建预测类数据集发布任务 当前预测类数据集仅支持发布默认格式,选择好数据集的发布格式后,单击“下一步”。 设置数据集

    来自:帮助中心

    查看更多 →

  • 执行批量预测作业

    在“联邦预测”页面批量预测Tab页,查找待执行的作业,单击“发起预测”,在系统弹窗中填写“分类阈值”,勾选数据集发起联邦预测。 如果在创建联邦预测作业 步骤4中勾选的模型不包含标签方特征,联邦预测支持只勾选己方数据集发起单方预测。 图1 发起预测 图2 勾选数据集 在“联邦预测”页面批量预测Tab

    来自:帮助中心

    查看更多 →

  • 执行实时预测作业

    执行实时预测作业 执行实时预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面实时预测Tab页,单击“模型部署”,开始部署模型。 图1 模型部署 模型部署完成后,单击“发起预测”,在系统弹窗中填写要预测的“

    来自:帮助中心

    查看更多 →

  • 预测API的域名停用公告

    预测API的 域名 停用公告 华为云ModelArts将于2024年12月31日 00:00(北京时间)逐步停用预测API的域名huaweicloudapis.com,后续预测API切换使用新域名modelarts-infer.com。 停用范围 影响区域:华为云全部Region 停用影响

    来自:帮助中心

    查看更多 →

  • 获取纵向联邦作业详情

    特征选择,MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate String 纵向联邦算法学习率,最大长度16 label_dataset String 标签数据集,最大长度100 label_agent

    来自:帮助中心

    查看更多 →

  • 保存纵向联邦作业

    MODEL_TRAIN.模型训练,MODEL_EVALUATION.模型评估,MODEL_PREDICT.预测 learning_rate 否 String 纵向联邦算法学习率,最大长度16 label_dataset 否 String 标签数据集,最大长度100 label_agent

    来自:帮助中心

    查看更多 →

  • 场景介绍

    DevServer资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强

    来自:帮助中心

    查看更多 →

  • Standard自动学习

    Standard自动学习 功能咨询 准备数据 创建项目 数据标注 模型训练 部署上线

    来自:帮助中心

    查看更多 →

  • 横向联邦学习场景

    横向联邦学习场景 TI CS 从UCI网站上获取了乳腺癌数据集Breast,进行横向联邦学习实验场景的功能介绍。 乳腺癌数据集:基于医学图像中提取的若干特征,判断癌症是良性还是恶性,数据来源于公开数据Breast Cancer Wisconsin (Diagnostic)。 场景描述

    来自:帮助中心

    查看更多 →

  • 学习各地管局政策

    学习各地管局政策 各地区管局备案政策不定期更新,本文档内容供您参考,具体规则请以各管局要求为准。 各地区管局备案要求 华北各省管局要求 华东各省管局要求 华南各省管局要求 华中各省管局要求 西北各省管局要求 西南各省管局要求 东北各省管局要求

    来自:帮助中心

    查看更多 →

  • 训练物体检测模型

    被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 标签传播算法(Label Propagation)

    标签传播算法(Label Propagation) 概述 标签传播算法(Label Propagation)是一种基于图的半监督学习方法,其基本思路是已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度

    来自:帮助中心

    查看更多 →

  • 训练文本分类模型

    被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard自动学习实现口罩检测

    在服务详情页,选择“预测”页签。 图5 上传预测图片 单击“上传”选择上传一张需要预测的图片,单击“预测”,即可在右边的预测结果显示区查看您的预测结果。 图6 查看预测结果(1)--没戴口罩 图7 查看预测结果(2)--戴口罩 后续操作:清除相应资源 在完成预测之后,建议关闭服务,以免产生不必要的计费。

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了