AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    深度学习怎么训练模型 更多内容
  • BF16和FP16说明

    ,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。 综上所述,BF16因

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

  • AI Gallery功能介绍

    面向开发者提供了AI Gallery大模型开源社区,通过大模型为用户提供服务,普及大模型行业。AI Gallery提供了大量基于昇腾云底座适配的三方开源大模型,同步提供了可以快速体验模型的能力、极致的开发体验,助力开发者快速了解并学习模型。 构建零门槛线上模型体验,零基础开发者开箱即用,初学者三行代码使用所有模型

    来自:帮助中心

    查看更多 →

  • 大模型开发基本流程介绍

    去噪处理:去除无关或异常值,减少对模型训练的干扰。 数据预处理的目的是保证数据集的质量,使其能够有效地训练模型,并减少对模型性能的不利影响。 模型开发:模型开发是大模型项目中的核心阶段,通常包括以下步骤: 选择合适的模型:根据任务目标选择适当的模型模型训练:使用处理后的数据集训练模型。 超参数调优

    来自:帮助中心

    查看更多 →

  • ModelArts中常用概念

    ModelArts中常用概念 自动学习 自动学习功能可以根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型,不需要代码编写和模型开发经验。只需三步,标注数据、自动训练、部署模型,即可完成模型构建。 端-边-云 端-边-云分别指端侧设备、智能边缘设备、公有云。 推理

    来自:帮助中心

    查看更多 →

  • 场景介绍

    化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。

    来自:帮助中心

    查看更多 →

  • 模型使用指引

    小。在深度学习中,微调用于改进预训练模型的性能。 2 生成模型服务 将已有模型部署为模型服务 接入模型服务 支持通过API接入模型服务,同时支持将平台预置模型进行微调后,部署为模型服务,模型服务可以在创建Agent时使用或通过模型调用接口调用。 3 调测模型 通过调测模型,可检验

    来自:帮助中心

    查看更多 →

  • 场景介绍

    准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。

    来自:帮助中心

    查看更多 →

  • 如何修改机器人规格,不同版本机器人区别

    功能模块: 包含“专业版”功能,以及以下功能。 深度学习模型训练 如何修改机器人规格 登录CBS控制台。 在 智能问答机器人 列表中,选择“操作”列的“规格修改”。 图1 规格修改 依据使用需求修改机器人的规格。 图2 修改 问答机器人 规格 父主题: 智能问答机器人

    来自:帮助中心

    查看更多 →

  • 开源模型怎么部署?

    开源模型怎么部署? 开源模型的部署需要购买推理单元,具体操作如下: 在AI原生应用引擎的左侧导航栏选择“资产中心”,选择“大模型”页签。 将鼠标光标移至待部署的开源模型卡片上,单击“部署”。 在“创建部署服务”页面,可以查看到需要几个推理单元,单击“购买推理单元资源”。 图1 创建部署服务

    来自:帮助中心

    查看更多 →

  • CodeArts IDE Online最佳实践汇总

    Online、TensorFlow和Jupyter Notebook开发深度学习模型 本实践主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型训练,并利用该模型完成简单的图像分类。

    来自:帮助中心

    查看更多 →

  • 模型训练服务首页简介

    模型训练服务首页简介 模型训练服务首页展示了用户自己创建的项目和用户所属租户下面其他用户创建的公开项目,提供如下功能: 创建项目 使用模板快速创建项目,模板中已经预制数据集、特征处理算法、模型训练算法和模型验证算法。 查看和编辑项目信息 模型训练服务首页界面如下图所示。 图1 模型训练服务首页

    来自:帮助中心

    查看更多 →

  • 训练科学计算大模型

    训练科学计算大模型 科学计算大模型训练流程与选择建议 创建科学计算大模型训练任务 查看科学计算大模型训练状态与指标 发布训练后的科学计算大模型 管理科学计算大模型训练任务 科学计算大模型训练常见报错与解决方案 父主题: 开发盘古科学计算大模型

    来自:帮助中心

    查看更多 →

  • eagle投机小模型训练

    eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • eagle 投机小模型训练

    eagle 投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip

    来自:帮助中心

    查看更多 →

  • Eagle投机小模型训练

    Eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据训练eagle小模型,并使用自行训练的小模型进行eagle推理。支持llama1系列、llama2系列和Qwen2系列模型。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x

    来自:帮助中心

    查看更多 →

  • 分布式模型训练

    分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题:

    来自:帮助中心

    查看更多 →

  • 管理模型训练作业

    管理模型训练作业 查看训练作业详情 查看训练作业资源占用情况 查看模型评估结果 查看训练作业事件 查看训练作业日志 修改训练作业优先级 使用Cloud Shell调试生产训练作业 重建、停止或删除训练作业 管理训练容器环境变量 查看训练作业标签 父主题: 使用ModelArts Standard训练模型

    来自:帮助中心

    查看更多 →

  • 使用ModelArts Standard训练模型

    使用ModelArts Standard训练模型 模型训练使用流程 准备模型训练代码 准备模型训练镜像 创建调试训练作业 创建算法 创建生产训练作业 分布式模型训练 模型训练存储加速 增量模型训练 自动模型优化(AutoSearch) 模型训练高可靠性 管理模型训练作业

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了