GeminiDB Redis 接口 

 

GeminiDB Redis 接口采用云原生分布式架构,完全兼容Redis协议,支持丰富数据类型。提供数据实时持久化、多副本强一致、自动备份等一站式服务

 
 

    nosql原理 更多内容
  • 只读落后自愈技术原理

    只读落后自愈技术原理 TaurusDB是存储计算分离架构的云原生数据库,只读节点和主节点共享底层的存储数据。为了保证内存中的缓存数据的一致性,主节点与只读节点通信后,只读节点需要从Log Stores中读取主节点产生的redo来更新内存中的缓存数据。 图1 只读落后自愈技术原理图 主节点与只读节点的通信

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 HPA工作原理 HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩的控制器,HPA周期性检查Pod的度量数据,计算满足HPA资源所配置的目标数值所需的副本数量,进而调整目标资源(如Deployment)的replicas字段。

    来自:帮助中心

    查看更多 →

  • HBase基本原理

    HBase基本原理 数据存储使用HBase来承接,HBase是一个开源的、面向列(Column-Oriented)、适合存储海量非结构化数据或半结构化数据的、具备高可靠性、高性能、可灵活扩展伸缩的、支持实时数据读写的分布式存储系统。更多关于HBase的信息,请参见:https://hbase

    来自:帮助中心

    查看更多 →

  • Hive基本原理

    Hive基本原理 Hive是建立在Hadoop上的 数据仓库 基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。Hive定义了简单的类SQL查询语言,称为HQL,它允许熟悉SQL的用户查询数据。

    来自:帮助中心

    查看更多 →

  • Kafka基本原理

    Group1与Consumer Group2中。 关于Kafka架构和详细原理介绍,请参见:https://kafka.apache.org/24/documentation.html。 Kafka原理 消息可靠性 Kafka Broker收到消息后,会持久化到磁盘,同时,To

    来自:帮助中心

    查看更多 →

  • HetuEngine基本原理

    HetuEngine基本原理 HetuEngine简介 HetuEngine是自研高性能交互式SQL分析及数据虚拟化引擎。与大数据生态无缝融合,实现海量数据秒级交互式查询;支持跨源跨域统一访问,使能 数据湖 内、湖间、湖仓一站式SQL融合分析。 HetuEngine结构 HetuEn

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 CCE支持多种工作负载伸缩方式,策略对比如下: 表1 弹性伸缩策略对比 伸缩策略 HPA策略 CronHPA策略 CustomedHPA策略 VPA策略 AHPA策略 策略介绍 Kubernetes中实现POD水平自动伸缩的功能,即Horizontal Pod Autoscaling。

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM 将根据源端的字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时的字段类型映射 CDM在数据仓库服务(Data Warehouse Service,简称DWS)中自动建表时,DWS的表与源表的字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • Ranger基本原理

    Ranger基本原理 Apache Ranger提供一个集中式安全管理框架,提供统一授权和统一审计能力。它可以对整个Hadoop生态中如HDFS、Hive、HBase、Kafka、Storm等进行细粒度的数据访问控制。用户可以利用Ranger提供的前端WebUI控制台通过配置相关策略来控制用户对这些组件的访问权限

    来自:帮助中心

    查看更多 →

  • ZooKeeper基本原理

    ZooKeeper基本原理 ZooKeeper简介 ZooKeeper是一个分布式、高可用性的协调服务。在大数据产品中主要提供两个功能: 帮助系统避免单点故障,建立可靠的应用程序。 提供分布式协作服务和维护配置信息。 ZooKeeper结构 ZooKeeper集群中的节点分为三种

    来自:帮助中心

    查看更多 →

  • 内网采集权限与原理

    内网采集权限与原理 主机深度采集 权限要求: Windows系统:需要提供具有Administrator权限的账号。 Linux系统:需要提供root账号。 采集原理: Windows系统:通过WinRM服务从Edge访问Windows主机,执行PowerShell脚本采集系统信息。

    来自:帮助中心

    查看更多 →

  • ClickHouse基本原理

    ClickHouse基本原理 ClickHouse简介 ClickHouse是一款开源的面向联机分析处理的列式数据库,其独立于Hadoop大数据体系,最核心的特点是压缩率和极速查询性能。同时,ClickHouse支持SQL查询,且查询性能好,特别是基于大宽表的聚合分析查询性能非常

    来自:帮助中心

    查看更多 →

  • IoTDB基本原理

    IoTDB基本原理 IoTDB(物联网数据库)是一体化收集、存储、管理与分析物联网时序数据的软件系统。 Apache IoTDB采用轻量式架构,具有高性能和丰富的功能。 IoTDB从存储上对时间序列进行排序,索引和chunk块存储,大大的提升时序数据的查询性能。通过Raft协议,

    来自:帮助中心

    查看更多 →

  • Flume基本原理

    点,这样可以实现负载均衡。 图3 Flume级联结构图 Flume的架构和详细原理介绍,请参见:https://flume.apache.org/releases/1.9.0.html。 Flume原理 Agent之间的可靠性 Agent之间数据交换流程如图4所示。 图4 Agent数据传输流程

    来自:帮助中心

    查看更多 →

  • Manager基本原理

    Manager基本原理 Manager功能 Manager是 MRS 的运维管理系统,为部署在集群内的服务提供统一的集群管理能力。 Manager支持大规模集群的性能监控、告警、用户管理、权限管理、审计、服务管理、健康检查、日志采集等功能。 Manager结构 Manager的整体逻辑架构如图1所示。

    来自:帮助中心

    查看更多 →

  • CronFederatedHPA工作原理

    CronFederatedHPA工作原理 CronFederatedHPA的工作原理如图1。创建CronFederatedHPA策略时,可以设定一个具体的时间,基于设定的时间调整HPA策略的最大和最小Pod数,也可以直接定时调整工作负载中的Pod数量。 图1 CronFederatedHPA工作原理 单独使用CronFederatedHPA

    来自:帮助中心

    查看更多 →

  • 企业路由器工作原理

    火墙。 图1 企业路由器使用方法 当您了解了企业路由器的使用方法后,接下来将为您详细介绍企业路由器的工作原理。工作原理如图2所示,详细说明请参见表2。 图2 企业路由器工作原理图 表1 网络流量路径说明 序号 路径 说明 1 请求路径:VPC1→DC全域接入网关 从VPC1去往D

    来自:帮助中心

    查看更多 →

  • DDS节点脱节原理和说明

    DDS节点脱节原理和说明 副本集架构由主节点、备节点和隐藏节点组成,DDS自动搭建三节点的副本集供用户使用,节点之间数据自动同步,保证数据的高可靠性。对于需要保证高可用的中小型业务系统,推荐使用副本集。 主节点:即Primary节点,用于读写请求。 备节点:即Secondary节点,用于读请求。

    来自:帮助中心

    查看更多 →

  • MapReduce基本原理

    MapReduce基本原理 如需使用MapReduce,请确保MRS集群内已安装Hadoop服务。 MapReduce是Hadoop的核心,是Google提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算。概念“Map(映射)”和“Reduce(化简)”及其主要思想,均取自于函数式编程语言及矢量编程语言。

    来自:帮助中心

    查看更多 →

  • Kvrocks到GeminiDB Redis的迁移

    Kvrocks到GeminiDB Redis的迁移 Kvrocks是一款开源的兼容Redis生态的NoSQL key-value数据库,底层基于RocksDB实现,并提供namespace功能支持数据分区。Kvrocks集群管理功能相对薄弱,自建集群时需要与外部组件配合,Kvro

    来自:帮助中心

    查看更多 →

  • hashtag的原理、规则及用法示例

    hashtag的原理、规则及用法示例 hashtag原理 单实例上的mset、lua脚本等处理多key时,是一个原子性(atomic)操作,所有给定key都会在同一时间内被执行。集群每次通过对key进行hash计算到不同的分片,所以集群上同时执行多个key,不再是原子性操作,会存在某些给定

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了