AI&大数据

高精度,多场景,快响应,AI&大数据助力企业降本增效

 
 

    ai人工智能原理 更多内容
  • Hive基本原理

    Hive基本原理 Hive是建立在Hadoop上的 数据仓库 基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。Hive定义了简单的类SQL查询语言,称为HQL,它允许熟悉SQL的用户查询数据。

    来自:帮助中心

    查看更多 →

  • Kafka基本原理

    Group1与Consumer Group2中。 关于Kafka架构和详细原理介绍,请参见:https://kafka.apache.org/24/documentation.html。 Kafka原理 消息可靠性 Kafka Broker收到消息后,会持久化到磁盘,同时,To

    来自:帮助中心

    查看更多 →

  • HetuEngine基本原理

    HetuEngine基本原理 HetuEngine简介 HetuEngine是自研高性能交互式SQL分析及数据虚拟化引擎。与大数据生态无缝融合,实现海量数据秒级交互式查询;支持跨源跨域统一访问,使能 数据湖 内、湖间、湖仓一站式SQL融合分析。 HetuEngine结构 HetuEn

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 HPA工作原理 HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩的控制器,HPA周期性检查Pod的度量数据,计算满足HPA资源所配置的目标数值所需的副本数量,进而调整目标资源(如Deployment)的replicas字段。

    来自:帮助中心

    查看更多 →

  • 自动建表原理介绍

    自动建表原理介绍 CDM 将根据源端的字段类型进行默认规则转换成目的端字段类型,并在目的端建数据表。 自动建表时的字段类型映射 CDM在数据仓库服务(Data Warehouse Service,简称DWS)中自动建表时,DWS的表与源表的字段类型映射关系如图1所示。例如使用CDM

    来自:帮助中心

    查看更多 →

  • 工作负载伸缩原理

    工作负载伸缩原理 CCE支持多种工作负载伸缩方式,策略对比如下: 表1 弹性伸缩策略对比 伸缩策略 HPA策略 CronHPA策略 CustomedHPA策略 VPA策略 AHPA策略 策略介绍 Kubernetes中实现POD水平自动伸缩的功能,即Horizontal Pod Autoscaling。

    来自:帮助中心

    查看更多 →

  • 内网采集权限与原理

    内网采集权限与原理 主机深度采集 权限要求: Windows系统:需要提供具有Administrator权限的账号。 Linux系统:需要提供root账号。 采集原理: Windows系统:通过WinRM服务从Edge访问Windows主机,执行PowerShell脚本采集系统信息。

    来自:帮助中心

    查看更多 →

  • ClickHouse基本原理

    ClickHouse基本原理 ClickHouse简介 ClickHouse是一款开源的面向联机分析处理的列式数据库,其独立于Hadoop大数据体系,最核心的特点是压缩率和极速查询性能。同时,ClickHouse支持SQL查询,且查询性能好,特别是基于大宽表的聚合分析查询性能非常

    来自:帮助中心

    查看更多 →

  • IoTDB基本原理

    IoTDB基本原理 IoTDB(物联网数据库)是一体化收集、存储、管理与分析物联网时序数据的软件系统。 Apache IoTDB采用轻量式架构,具有高性能和丰富的功能。 IoTDB从存储上对时间序列进行排序,索引和chunk块存储,大大的提升时序数据的查询性能。通过Raft协议,

    来自:帮助中心

    查看更多 →

  • AI

    AI 开始人脸检测 停止人脸检测 获取人脸图像 父主题: 配置类

    来自:帮助中心

    查看更多 →

  • ai

    ai_watchdog_detection_warnings 表1 ai_watchdog_detection_warnings参数 参数 类型 描述 event text 事件名称。 cause text 事件原因。 details text 事件详情。 time timestamp

    来自:帮助中心

    查看更多 →

  • ai

    ai_watchdog_monitor_status 表1 ai_watchdog_monitor_status参数说明 参数 类型 描述 metric_name text metric指标名称: tps:TPS。 tps_hourly:每小时的TPS均值。 shared_used_mem:共享内存使用量(MB)。

    来自:帮助中心

    查看更多 →

  • ai

    ai_watchdog_detection_warnings 表1 ai_watchdog_detection_warnings参数 参数 类型 描述 event text 事件名称。 cause text 事件原因。 details text 事件详情。 time timestamp

    来自:帮助中心

    查看更多 →

  • ai

    ai_watchdog_monitor_status 表1 ai_watchdog_monitor_status参数说明 参数 类型 描述 metric_name text metric指标名称: tps:TPS。 tps_hourly:每小时的TPS均值。 shared_used_mem:共享内存使用量(MB)。

    来自:帮助中心

    查看更多 →

  • AI

    AI GS_MODEL_WAREHOUSE GS_OPT_MODEL GS_ABO_MODEL_STATISTIC 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • AI

    AI 人脸检测结果 消息名称 MSG_AI_FACE_DETECTION_RESULT 功能描述 启动人脸检测功能后,通过该消息上报人脸检测结果列表,列表中包含 人脸识别 ID及坐标信息,最多支持同时识别十人。 是否自动推送 是 subMsgID 预留 Param1 预留 Param2

    来自:帮助中心

    查看更多 →

  • AI

    AI 企业智慧屏的音幕、声源定位、Auto-Framing是否是终端独立能力,与入驻式平台版本有关联么? 如何实现人脸识别功能? 如何实现人脸唤醒功能? AI多模态会议纪要和实时字幕翻译怎么实现? 父主题: 产品规格

    来自:帮助中心

    查看更多 →

  • ai

    ai_watchdog_parameters 表1 ai_watchdog_parameters参数 参数 类型 描述 name text 参数名称,包括如下常用参数: enable_ai_watchdog:是否开启本功能。 ai_watchdog_max_consuming_time_ms:最大耗时。

    来自:帮助中心

    查看更多 →

  • ai

    ai_watchdog_parameters 表1 ai_watchdog_parameters参数 参数 类型 描述 name text 参数名称,包括如下常用参数: enable_ai_watchdog:是否开启本功能。 ai_watchdog_max_consuming_time_ms:最大耗时。

    来自:帮助中心

    查看更多 →

  • AI

    AI GS_MODEL_WAREHOUSE GS_OPT_MODEL GS_ABO_MODEL_STATISTIC 父主题: 系统表

    来自:帮助中心

    查看更多 →

  • 人工智能性能优化

    人工智能性能优化 1.训练优化模型性能提升实践 参数调优策略:调整模型flash attention、并行切分策略、micro batch size、重计算策略等参数。 尽可能充分利用显存和算力,通过参数调优,初步优化性能。 性能拆解 参数调优后性能仍然与转商目标有较大的差距,需

    来自:帮助中心

    查看更多 →

共105条
看了本文的人还看了