计算
弹性云服务器 ECS
Flexus云服务
裸金属服务器 BMS
弹性伸缩 AS
镜像服务 IMS
专属主机 DeH
函数工作流 FunctionGraph
云手机服务器 CPH
Huawei Cloud EulerOS
网络
虚拟私有云 VPC
弹性公网IP EIP
虚拟专用网络 VPN
弹性负载均衡 ELB
NAT网关 NAT
云专线 DC
VPC终端节点 VPCEP
云连接 CC
企业路由器 ER
企业交换机 ESW
全球加速 GA
安全与合规
安全技术与应用
Web应用防火墙 WAF
企业主机安全 HSS
云防火墙 CFW
安全云脑 SecMaster
DDoS防护 AAD
数据加密服务 DEW
数据库安全服务 DBSS
云堡垒机 CBH
数据安全中心 DSC
云证书管理服务 CCM
边缘安全 EdgeSec
威胁检测服务 MTD
CDN与智能边缘
内容分发网络 CDN
CloudPond云服务
智能边缘云 IEC
迁移
主机迁移服务 SMS
对象存储迁移服务 OMS
云数据迁移 CDM
迁移中心 MGC
大数据
MapReduce服务 MRS
数据湖探索 DLI
表格存储服务 CloudTable
云搜索服务 CSS
数据接入服务 DIS
数据仓库服务 GaussDB(DWS)
数据治理中心 DataArts Studio
数据可视化 DLV
数据湖工厂 DLF
湖仓构建 LakeFormation
企业应用
云桌面 Workspace
应用与数据集成平台 ROMA Connect
云解析服务 DNS
专属云
专属计算集群 DCC
IoT物联网
IoT物联网
设备接入 IoTDA
智能边缘平台 IEF
用户服务
账号中心
费用中心
成本中心
资源中心
企业管理
工单管理
国际站常见问题
ICP备案
我的凭证
支持计划
客户运营能力
合作伙伴支持计划
专业服务
区块链
区块链服务 BCS
Web3节点引擎服务 NES
解决方案
SAP
高性能计算 HPC
视频
视频直播 Live
视频点播 VOD
媒体处理 MPC
实时音视频 SparkRTC
数字内容生产线 MetaStudio
存储
对象存储服务 OBS
云硬盘 EVS
云备份 CBR
存储容灾服务 SDRS
高性能弹性文件服务 SFS Turbo
弹性文件服务 SFS
云硬盘备份 VBS
云服务器备份 CSBS
数据快递服务 DES
专属分布式存储服务 DSS
容器
云容器引擎 CCE
容器镜像服务 SWR
应用服务网格 ASM
华为云UCS
云容器实例 CCI
管理与监管
云监控服务 CES
统一身份认证服务 IAM
资源编排服务 RFS
云审计服务 CTS
标签管理服务 TMS
云日志服务 LTS
配置审计 Config
资源访问管理 RAM
消息通知服务 SMN
应用运维管理 AOM
应用性能管理 APM
组织 Organizations
优化顾问 OA
IAM 身份中心
云运维中心 COC
资源治理中心 RGC
应用身份管理服务 OneAccess
数据库
云数据库 RDS
文档数据库服务 DDS
数据管理服务 DAS
数据复制服务 DRS
云数据库 GeminiDB
云数据库 GaussDB
分布式数据库中间件 DDM
数据库和应用迁移 UGO
云数据库 TaurusDB
人工智能
人脸识别服务 FRS
图引擎服务 GES
图像识别 Image
内容审核 Moderation
文字识别 OCR
AI开发平台ModelArts
图像搜索 ImageSearch
对话机器人服务 CBS
华为HiLens
视频智能分析服务 VIAS
语音交互服务 SIS
应用中间件
分布式缓存服务 DCS
API网关 APIG
微服务引擎 CSE
分布式消息服务Kafka版
分布式消息服务RabbitMQ版
分布式消息服务RocketMQ版
多活高可用服务 MAS
事件网格 EG
企业协同
华为云会议 Meeting
云通信
消息&短信 MSGSMS
云生态
合作伙伴中心
云商店
开发者工具
SDK开发指南
API签名指南
Terraform
华为云命令行工具服务 KooCLI
其他
产品价格详情
系统权限
管理控制台
客户关联华为云合作伙伴须知
消息中心
公共问题
开发与运维
应用管理与运维平台 ServiceStage
软件开发生产线 CodeArts
需求管理 CodeArts Req
部署 CodeArts Deploy
性能测试 CodeArts PerfTest
编译构建 CodeArts Build
流水线 CodeArts Pipeline
制品仓库 CodeArts Artifact
测试计划 CodeArts TestPlan
代码检查 CodeArts Check
代码托管 CodeArts Repo
云应用引擎 CAE
开天aPaaS
云消息服务 KooMessage
云手机服务 KooPhone
云空间服务 KooDrive

Upsert Kafka

更新时间:2025-01-10 GMT+08:00

功能描述

Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。Upsert Kafka 连接器支持以upsert方式从Kafka topic中读取数据并将数据写入Kafka topic。表类型支持源表和结果表。

  • 作为source,upsert-kafka 连接器生产changelog流,其中每条数据记录代表一个更新或删除事件。

    数据记录中的value被解释为同一key的最后一个value的UPDATE,如果有这个key(如果不存在相应的key,则该更新被视为INSERT)。用表来类比,changelog 流中的数据记录被解释为UPSERT,也称为INSERT/UPDATE,因为任何具有相同key的现有行都被覆盖。另外,value为空的消息将会被视作为DELETE消息。

  • 作为sink,upsert-kafka连接器可以消费changelog流。它会将INSERT/UPDATE_AFTER数据作为正常的Kafka消息写入,并将DELETE数据以value为空的Kafka消息写入(表示对应 key 的消息被删除)。Flink将根据主键列的值对数据进行分区,从而保证主键上的消息有序,因此同一主键上的更新/删除消息将落在同一分区中。
表1 支持类别

类别

详情

支持表类型

源表、结果表

前提条件

该场景作业需要运行在DLI的独享队列上,要与kafka集群建立增强型跨源连接,且用户可以根据实际所需设置相应安全组规则。

注意事项

  • 创建Flink OpenSource SQL作业时,在作业编辑界面的“运行参数”处,“Flink版本”需要选择“1.15”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。
  • 认证用的username和password等硬编码到代码中或者明文存储都有很大的安全风险,建议使用DEW管理凭证。配置文件或者环境变量中密文存放,使用时解密,确保安全。Flink Opensource SQL使用DEW管理访问凭据
  • Upsert Kafka 始终以upsert方式工作,并且需要在DDL中定义主键。在具有相同主键值的消息按序存储在同一个分区的前提下,在 changlog source 定义主键意味着 在物化后的 changelog 上主键具有唯一性。定义的主键将决定哪些字段出现在Kafka消息的key中。
  • 由于该连接器以 upsert 的模式工作,该连接器作为 source 读入时,可以确保具有相同主键值下仅最后一条消息会生效。
  • 数据类型的使用,请参考Format章节。

语法格式

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
create table kafkaTable(
  attr_name attr_type 
  (',' attr_name attr_type)* 
  (','PRIMARY KEY (attr_name, ...) NOT ENFORCED)
)
with (
  'connector' = 'upsert-kafka',
  'topic' = '',
  'properties.bootstrap.servers' = '',
  'key.format' = '',
  'value.format' = ''
);

参数说明

表2 参数说明

参数

是否必选

默认参数

数据类型

说明

connector

String

connector类型,对于upsert kafka连接器,需配置为'upsert-kafka'。

topic

String

Kafka topic名。

properties.bootstrap.servers

String

Kafka brokers地址,以逗号分隔。

key.format

String

用于对Kafka消息中key部分序列化和反序列化的格式。key字段由PRIMARY KEY语法指定。支持的格式如下:

  • csv
  • json
  • avro

请参考Format页面以获取更多详细信息和格式参数。

key.fields-prefix

String

为键格式的所有字段定义自定义前缀,以避免与值格式的字段发生名称冲突。

默认情况下,前缀为空。如果定义了自定义前缀,则表架构和'key.fields'都将使用前缀名称。在构造密钥格式的数据类型时,将删除前缀,并在密钥格式中使用无前缀的名称。请注意,此选项要求'value.fields-include' 必须设置为'EXCEPT_KEY'。

value.format

String

用于对 Kafka消息中 value 部分序列化和反序列化的格式。支持的格式:

  • csv
  • json
  • avro

请参考Format页面以获取更多详细信息和格式参数。

value.fields-include

ALL

String

控制哪些字段应该出现在值中。取值范围如下:

  • ALL:消息的value部分将包含schema的所有字段,包括定义中键的字段。
  • EXCEPT_KEY:记录的value部分包含schema的所有内容,定义为主键的字段除外。

properties.*

String

该选项可以传递任意的Kafka参数。

“properties.”后的后缀名必须匹配定义在 kafka参数文档中的参数名。 Flink会自动移除选项名中的 "properties." 前缀,并将转换后的键名以及值传入KafkaClient。

例如:您可以通过 'properties.allow.auto.create.topics' = 'false' 来禁止自动创建 topic。

但是'key.deserializer' 和 'value.deserializer' 是不允许通过该方式传递参数,因为Flink会重写这些参数的值。

sink.parallelism

Integer

定义upsert-kafka sink 算子的并行度。默认情况下,由框架确定并行度,与上游连接算子的并行度保持一致。

sink.buffer-flush.max-rows

0

Integer

缓存刷新前,最多能缓存的记录条数。

当sink收到很多同key上的更新时,缓存将保留同 key 的最后一条记录,因此sink缓存能帮助减少发往Kafka topic的数据量,以及避免发送潜在的tombstone消息。可以通过设置为'0'来禁用它。

默认情况下,该选项是未开启的。如果要开启 sink 缓存,需要同时设置'sink.buffer-flush.max-rows'和'sink.buffer-flush.interval'两个选项为大于零的值。

sink.buffer-flush.interval

0

Duration

缓存刷新的间隔时间,超过该时间后异步线程将刷新缓存数据。单位可以为毫秒(ms)、秒(s)、分钟(min)或小时(h)。例如'sink.buffer-flush.interval'='10 ms'。

默认情况下,该选项是未开启的。如果要开启 sink 缓存,需要同时设置'sink.buffer-flush.max-rows'和'sink.buffer-flush.interval'两个选项为大于零的值。

元数据

可用的元数据字段列表,请参阅Kafka连接器

示例

  • 示例1:该示例是从DMS Kafka数据源中读取数据,并写入到Print结果表中。
    1. 参考增强型跨源连接,根据Kafka所在的虚拟私有云和子网创建相应的增强型跨源,并绑定所要使用的Flink弹性资源池。
    2. 设置Kafka的安全组,添加入向规则使其对Flink的队列网段放通。参考测试地址连通性根据Kafka的地址测试队列连通性。如果能连通,则表示跨源已经绑定成功,否则表示未成功。
    3. 创建flink opensource sql作业,输入以下作业脚本,提交运行作业。
      注意:创建作业时,在作业编辑界面的“运行参数”处,“Flink版本”选择“1.15”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。如下脚本中的加粗参数请根据实际环境修改。
      CREATE TABLE upsertKafkaSource (
        order_id string,
        order_channel string,
        order_time string,
        pay_amount double,
        real_pay double,
        pay_time string,
        user_id string,
        user_name string,  
        area_id string,
        PRIMARY KEY (order_id) NOT ENFORCED
      ) WITH (
        'connector' = 'upsert-kafka',
        'topic' = 'KafkaTopic',
        'properties.bootstrap.servers' =  'KafkaAddress1:KafkaPort,KafkAddress2:KafkaPort',
        'key.format' = 'csv',
        'value.format' = 'json'
      );
      
      CREATE TABLE printSink (
        order_id string,
        order_channel string,
        order_time string,
        pay_amount double,
        real_pay double,
        pay_time string,
        user_id string,
        user_name string,  
        area_id string,
        PRIMARY KEY (order_id) NOT ENFORCED
      ) WITH (
        'connector' = 'print'
      );
      
      INSERT INTO printSink SELECT * FROM upsertKafkaSource;
    4. 向Kafka中的指定topic中插入如下数据(注意:kafka插入数据时请指定key)。
      {"order_id":"202303251202020001", "order_channel":"miniAppShop", "order_time":"2023-03-25 12:02:02", "pay_amount":"60.00", "real_pay":"60.00", "pay_time":"2023-03-25 12:03:00", "user_id":"0002", "user_name":"Bob", "area_id":"330110"}
      
      {"order_id":"202303251505050001", "order_channel":"appshop", "order_time":"2023-03-25 15:05:05", "pay_amount":"500.00", "real_pay":"400.00", "pay_time":"2023-03-25 15:10:00", "user_id":"0003", "user_name":"Cindy", "area_id":"330108"}
      
      {"order_id":"202303251202020001", "order_channel":"miniAppShop", "order_time":"2023-03-25 12:02:02", "pay_amount":"60.00", "real_pay":"60.00", "pay_time":"2023-03-25 12:03:00", "user_id":"0002", "user_name":"Bob", "area_id":"330111"}
    5. 查看taskmanager的out文件,数据结果参考如下:
      +I(202303251202020001,miniAppShop,2023-03-2512:02:02,60.0,60.0,2023-03-2512:03:00,0002,Bob,330110)
      +I(202303251505050001,appshop,2023-03-25 15:05:05,500.0,400.0,2023-03-2515:10:00,0003,Cindy,330108)
      -U(202303251202020001,miniAppShop,2023-03-2512:02:02,60.0,60.0,2023-03-2512:03:00,0002,Bob,330110)
      +U(202303251202020001,miniAppShop,2023-03-2512:02:02,60.0,60.0,2023-03-2512:03:00,0002,Bob,330111)
  • 示例2:从Kafka源表获取DMS Kafka source topic数据,通过Upsert Kafka结果表将Kafka source topic数据写入到Kafka sink topic中。
    1. 参考增强型跨源连接,根据Kafka所在的虚拟私有云和子网创建相应的增强型跨源,并绑定所要使用的Flink弹性资源池。
    2. 设置Kafka的安全组,添加入向规则使其对Flink的队列网段放通。参考测试地址连通性根据Kafka的地址测试队列连通性。如果能连通,则表示跨源已经绑定成功,否则表示未成功。
    3. 创建flink opensource sql作业,输入以下作业脚本,提交运行作业。

      注意:创建作业时,在作业编辑界面的“运行参数”处,“Flink版本”选择“1.15”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。如下脚本中的加粗参数请根据实际环境修改

      CREATE TABLE orders (
        order_id string,
        order_channel string,
        order_time string,
        pay_amount double,
        real_pay double,
        pay_time string,
        user_id string,
        user_name string,
        area_id string
      ) WITH (
        'connector' = 'kafka',
        'topic' = 'KafkaTopic',
        'properties.bootstrap.servers' = 'KafkaAddress1:KafkaPort,KafkAddress2:KafkaPort',
        'properties.group.id' = 'GroupId',
        'scan.startup.mode' = 'latest-offset',
        'format' = 'json'
      );
      
      CREATE TABLE upsertKafkaSink (
        order_id string,
        order_channel string,
        order_time string,
        pay_amount double,
        real_pay double,
        pay_time string,
        user_id string,
        user_name string,
        area_id string,
        PRIMARY KEY(order_id) NOT ENFORCED
      ) WITH (
        'connector' = 'upsert-kafka',
        'topic' = 'KafkaTopic',
        'properties.bootstrap.servers' =  'KafkaAddress1:KafkaPort,KafkAddress2:KafkaPort',
        'key.format' = 'csv',
        'value.format' = 'json'
      );
      
      insert into upsertKafkaSink select * from orders;
    4. 连接Kafka集群,kafka中source topic发送如下测试数据:
      {"order_id":"202303251202020001", "order_channel":"miniAppShop", "order_time":"2023-03-25 12:02:02", "pay_amount":"60.00", "real_pay":"60.00", "pay_time":"2023-03-25 12:03:00", "user_id":"0002", "user_name":"Bob", "area_id":"330110"}
      
      {"order_id":"202303251505050001", "order_channel":"appshop", "order_time":"2023-03-25 15:05:05", "pay_amount":"500.00", "real_pay":"400.00", "pay_time":"2023-03-25 15:10:00", "user_id":"0003", "user_name":"Cindy", "area_id":"330108"}
      
      {"order_id":"202303251202020001", "order_channel":"miniAppShop", "order_time":"2023-03-25 12:02:02", "pay_amount":"60.00", "real_pay":"60.00", "pay_time":"2023-03-25 12:03:00", "user_id":"0002", "user_name":"Bob", "area_id":"330111"}
    5. 连接Kafka集群,获取kafka sink topic的数据,结果参考如下:
      {"order_id":"202303251202020001", "order_channel":"miniAppShop", "order_time":"2023-03-25 12:02:02", "pay_amount":"60.00", "real_pay":"60.00", "pay_time":"2023-03-25 12:03:00", "user_id":"0002", "user_name":"Bob", "area_id":"330110"}
      
      {"order_id":"202303251505050001", "order_channel":"appshop", "order_time":"2023-03-25 15:05:05", "pay_amount":"500.00", "real_pay":"400.00", "pay_time":"2023-03-25 15:10:00", "user_id":"0003", "user_name":"Cindy", "area_id":"330108"}
      
      {"order_id":"202303251202020001", "order_channel":"miniAppShop", "order_time":"2023-03-25 12:02:02", "pay_amount":"60.00", "real_pay":"60.00", "pay_time":"2023-03-25 12:03:00", "user_id":"0002", "user_name":"Bob", "area_id":"330111"}
  • 示例3:MRS集群开启Kerberos认证,并且Kafka使用SASL_PLAINTEXT协议,从Kafka源表获取数据,并写入到Print结果表中。
    1. 参考增强型跨源连接,根据MRS集群所在的虚拟私有云和子网创建相应的增强型跨源,并绑定所要使用的Flink弹性资源池。
    2. 设置MRS集群的安全组,添加入向规则使其对Flink的队列网段放通。参考测试地址连通性根据Kafka的地址测试队列连通性。如果能连通,则表示跨源已经绑定成功,否则表示未成功。
    3. 创建flink opensource sql作业,输入以下作业脚本,提交运行作业。

      注意:创建作业时,在作业编辑界面的“运行参数”处,“Flink版本”选择“1.15”,勾选“保存作业日志”并设置保存作业日志的OBS桶,方便后续查看作业日志。如下脚本中的加粗参数请根据实际环境修改。

      CREATE TABLE upsertKafkaSource (
        order_id string,
        order_channel string,
        order_time string,
        pay_amount double,
        real_pay double,
        pay_time string,
        user_id string,
        user_name string,
        area_id string,
        PRIMARY KEY(order_id) NOT ENFORCED
      ) WITH (
        'connector' = 'upsert-kafka',
        'topic' = 'KafkaTopic',
        'properties.bootstrap.servers' =  'KafkaAddress1:KafkaPort,KafkAddress2:KafkaPort',
        'key.format' = 'csv',
        'value.format' = 'json',
        'properties.sasl.mechanism' = 'GSSAPI',
        'properties.security.protocol' = 'SASL_PLAINTEXT',
        'properties.sasl.kerberos.service.name' = 'kafka', --mrs中配置
        'properties.connector.auth.open' = 'true',
        'properties.connector.kerberos.principal' = 'username', --用户名
        'properties.connector.kerberos.krb5' = 'obs://xx/krb5.conf', --krb5_conf路径
        'properties.connector.kerberos.keytab' = 'obs://xx/user.keytab' --keytab路径
      );
      
      CREATE TABLE printSink (
        order_id string,
        order_channel string,
        order_time string,
        pay_amount double,
        real_pay double,
        pay_time string,
        user_id string,
        user_name string,  
        area_id string,
        PRIMARY KEY (order_id) NOT ENFORCED
      ) WITH (
        'connector' = 'print'
      );
      
      INSERT INTO printSink SELECT * FROM upsertKafkaSource;
    4. 向Kafka中的指定topic中插入如下数据(注意:kafka插入数据时请指定key):
      {"order_id":"202303251202020001", "order_channel":"miniAppShop", "order_time":"2023-03-25 12:02:02", "pay_amount":"60.00", "real_pay":"60.00", "pay_time":"2023-03-25 12:03:00", "user_id":"0002", "user_name":"Bob", "area_id":"330110"}
      
      {"order_id":"202303251505050001", "order_channel":"appshop", "order_time":"2023-03-25 15:05:05", "pay_amount":"500.00", "real_pay":"400.00", "pay_time":"2023-03-25 15:10:00", "user_id":"0003", "user_name":"Cindy", "area_id":"330108"}
      
      {"order_id":"202303251202020001", "order_channel":"miniAppShop", "order_time":"2023-03-25 12:02:02", "pay_amount":"60.00", "real_pay":"60.00", "pay_time":"2023-03-25 12:03:00", "user_id":"0002", "user_name":"Bob", "area_id":"330111"}
    5. 查看taskmanager的out文件,数据结果参考如下:
      +I(202303251202020001,miniAppShop,2023-03-2512:02:02,60.0,60.0,2023-03-2512:03:00,0002,Bob,330110)
      +I(202303251505050001,appshop,2023-03-2515:05:05,500.0,400.0,2023-03-2515:10:00,0003,Cindy,330108)
      -U(202303251202020001,miniAppShop,2023-03-2512:02:02,60.0,60.0,2023-03-2512:03:00,0002,Bob,330110)
      +U(202303251202020001,miniAppShop,2023-03-2512:02:02,60.0,60.0,2023-03-2512:03:00,0002,Bob,330111)

常见问题

我们使用cookie来确保您的高速浏览体验。继续浏览本站,即表示您同意我们使用cookie。 详情

文档反馈

文档反馈

意见反馈

0/500

标记内容

同时提交标记内容