El contenido no se encuentra disponible en el idioma seleccionado. Estamos trabajando continuamente para agregar más idiomas. Gracias por su apoyo.

Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive
On this page

Show all

Aggregate Functions

Updated on 2024-12-06 GMT+08:00
Table 1 Aggregate functions

No.

MySQL

GaussDB

Difference

1

AVG()

Supported, with differences.

  • In GaussDB, if DISTINCT is specified and the SQL statement contains a GROUP BY clause, the result sequence is not guaranteed.
  • In GaussDB, if the columns in expr are of the BIT, BOOL, or integer type and the sum of all rows exceeds the range of BIGINT, overflow occurs, reversing integers.
  • In GaussDB, the behavior is different when the input parameter of the AVG function is of the TEXT or BLOB type.
    • In MySQL 5.7, the return value type of AVG(TEXT/BLOB) is MEDIUMTEXT. In MySQL 8.0, the return value type of AVG(TEXT/BLOB) is DOUBLE.
    • In GaussDB, the return value type of AVG(TEXT/BLOB) is the same as that in MySQL 8.0.

2

BIT_AND()

Supported.

When the input parameter of the BIT_AND function is NULL and the BIT_AND function is nested by other functions, the result is –1 in MySQL 5.7 and NULL in MySQL 8.0. In GaussDB, the function nesting is the same as that in MySQL 8.0.
-- GaussDB:
m_db=# SELECT acos(bit_and(null));
 acos 
------

(1 row)
-- MySQL 5.7:
mysql> SELECT acos(bit_and(null));
+---------------------+
| acos(bit_and(null)) |
+---------------------+
|   3.141592653589793 |
+---------------------+
1 row in set (0.03 sec)

-- MySQL8.0
mysql> SELECT acos(bit_and(null));
+---------------------+
| acos(bit_and(null)) |
+---------------------+
|                NULL |
+---------------------+
1 row in set (0.01 sec)

3

BIT_OR()

Supported.

-

4

BIT_XOR()

Supported.

-

5

COUNT()

Supported, with differences.

In GaussDB, if DISTINCT is specified and the SQL statement contains a GROUP BY clause, the result sequence is not guaranteed.

GaussDB supports the count(tablename.*) syntax, but MySQL does not.

6

GROUP_CONCAT()

Supported, with differences.

  • In GaussDB, if DISTINCT is specified and the SQL statement contains a GROUP BY clause, the result sequence is not guaranteed.
  • In GaussDB, if the parameters in GROUP_CONCAT contain both the DISTINCT and ORDER BY syntaxes, all expressions following ORDER BY must be in the DISTINCT expression.
  • In GaussDB, GROUP_CONCAT(... ORDER BY Number) does not indicate the sequence of the parameter. The number is only a constant expression, which is equivalent to no sorting.
  • In GaussDB, the group_concat_max_len parameter is used to limit the maximum return length of GROUP_CONCAT. If the return length exceeds the maximum, the length is truncated. Currently, the maximum length that can be returned is 1073741823, which is smaller than that in MySQL.
  • When the default UTF-8 character set is used, the maximum number of bytes of UTF-8 character set in GaussDB is different from that in MySQL. As a result, the table structure in GaussDB is different from that in MySQL.
    -- GaussDB:
    m_db=# SET m_format_behavior_compat_options='enable_precision_decimal';
    SET
    m_db=# CREATE TABLE t1 AS SELECT * FROM (SELECT case WHEN 1 < 2 THEN group_concat(1.23, 3.24) ELSE 12.34 END v1) c1;
    INSERT 0 1
    m_db=# DESC t1;
     Field |     Type     | Null | Key | Default | Extra 
    -------+--------------+------+-----+---------+-------
     v1    | varchar(256) | YES  |     |         | 
    (1 row)
    -- MySQL 5.7:
    mysql> CREATE TABLE t1 AS SELECT * FROM (SELECT case WHEN 1 < 2 THEN group_concat(1.23, 3.24) ELSE 12.34 END v1) c1;
    Query OK, 1 row affected (0.01 sec)
    Records: 1  Duplicates: 0  Warnings: 0
    
    mysql> DESC t1;
    +-------+--------------+------+-----+---------+-------+
    | Field | Type         | Null | Key | Default | Extra |
    +-------+--------------+------+-----+---------+-------+
    | v1    | varchar(341) | YES  |     | NULL    |       |
    +-------+--------------+------+-----+---------+-------+
    1 row in set (0.00 sec)
  • When the GROUP_CONCAT function is used as the input parameter of the NULLIF function, the behavior in nested scenarios is different. In MySQL 5.7, no matter whether the GROUP_CONCAT function is nested in the input parameters of NULLIF, the values of GROUP_CONCAT in both occasions are regarded as the same and NULL is returned. In MySQL 8.0, the values are regarded as unequal due to precision differences. In GaussDB, this function is nested in the same way as that in MySQL 8.0.
    -- GaussDB:
    m_db=# SELECT nullif(group_concat(1/7), 1/7);
     nullif
    --------
     0.1429
    (1 row)
    -- MySQL 5.7:
    mysql> SELECT nullif(group_concat(1/7), 1/7);
    +--------------------------------+
    | nullif(group_concat(1/7), 1/7) |
    +--------------------------------+
    | NULL                           |
    +--------------------------------+
    1 row in set (0.00 sec)
    -- MySQL 8.0:
    mysql> SELECT nullif(group_concat(1/7), 1/7);
    +--------------------------------+
    | nullif(group_concat(1/7), 1/7) |
    +--------------------------------+
    | 0.1429                         |
    +--------------------------------+
    1 row in set (0.00 sec)

7

MAX()

Supported, with differences.

In GaussDB, if DISTINCT is specified and the SQL statement contains a GROUP BY clause, the result sequence is not guaranteed. When the parameter is not a table field, the return value type of the MAX function is different from that of MySQL 5.7.

When precision transfer is enabled, the MAX function is nested with the time interval calculation of the time, date, datetime, or timestamp type. The return value and return type are the same as those in MySQL 8.0.

When precision transfer is enabled, the return value and return type of the MAX and INTERVAL functions are the same as those of MySQL 8.0.

8

MIN()

Supported, with differences.

In GaussDB, if DISTINCT is specified and the SQL statement contains a GROUP BY clause, the result sequence is not guaranteed. When the parameter is not a table field, the return value type of the MIN function is different from that of MySQL 5.7.

When precision transfer is enabled, the MIN function is nested with the time interval calculation of the time, date, datetime, and timestamp types. The return value and return type are the same as those in MySQL 8.0.

When precision transfer is enabled, the return value and return type of the MIN and INTERVAL functions are the same as those in MySQL 8.0.

9

SUM()

Supported, with differences.

  • In GaussDB, if DISTINCT is specified and the SQL statement contains a GROUP BY clause, the result sequence is not guaranteed.
  • In GaussDB, if the columns in expr are of the BIT, BOOL, or integer type and the sum of all rows exceeds the range of BIGINT, overflow occurs, reversing integers.

10

STD()

Supported.

-

11

Aggregate Functions

Supported, with differences.

  • If the ORDER BY statement contains an aggregate function, no error is reported in GaussDB, but an error is reported in MySQL.
  • If precision transfer is disabled (m_format_behavior_compat_options is not set to 'enable_precision_decimal'), when an aggregate function uses other functions, operators, or expressions such as SELECT clauses as input parameters, for example, SELECT sum(abs(n)) FROM t, but cannot obtain the precision information transferred by the input parameter expression, the result precision of the function is different from that of MySQL.
  • The result of the aggregate function varies depending on the data input sequence.
    • For example, if ORDER BY is used together with the aggregate function, the execution sequence of the function is changed. As a result, the result is inconsistent with that in MySQL.
      -- Prepare a base table.
      CREATE TABLE test_n(col_unumeric1  decimal(4,3) unsigned, col_znumeric2 decimal(3,2) unsigned zerofill, col_znumeric3 decimal(5,3) unsigned zerofill);
      Query OK, 0 rows affected (0.01 sec)
      
      INSERT INTO test_n VALUES(1.010, 2.02, 3.303),(1.190, 2.29, 3.339),(1.180, 2.28, 3.338);
      Query OK, 3 rows affected (0.00 sec)
      Records: 3  Duplicates: 0  Warnings: 0
      
      CREATE TABLE test_n_2(col_unumeric1  decimal(4,3) unsigned, col_znumeric2 decimal(3,2) unsigned zerofill, col_znumeric3 decimal(5,3) unsigned zerofill);
      Query OK, 0 rows affected (0.02 sec)
      
      INSERT INTO test_n_2 VALUES(1.180, 2.28, 3.338),(1.190, 2.29, 3.339),(1.010, 2.02, 3.303);
      Query OK, 3 rows affected (0.00 sec)
      Records: 3  Duplicates: 0  Warnings: 0
      
      CREATE TABLE IF NOT EXISTS fun_op_case_tb_1 (id int, name varchar(20), col_unumeric1 NUMERIC(4,3) unsigned, col_znumeric2 DECIMAL(3,2) zerofill,col_znumeric3 DEC(5,3) zerofill);
      CREATE TABLE
      
      INSERT INTO fun_op_case_tb_1 (id, name, col_unumeric1, col_znumeric2, col_znumeric3) VALUES
      (1, 'Computer', 1.11, 2.12, 3.133),
      (2, 'Computer', 2.11, 2.22, 3.233),
      (3, 'Computer', 3.11, 2.32, 3.333),
      (4, 'Computer', 1.41, 2.42, 3.343),
      (5, 'Computer', 1.51, 2.52, 3.353),
      (6, 'Computer', 1.61, 2.26, 3.363),
      (7, 'Computer', 1.17, 2.27, 3.337),
      (8, 'Computer', 1.18, 2.28, 3.338),
      (9, 'Computer', 1.19, 2.29, 3.339),
      (10, 'Computer', 1.01, 2.02, 3.303),
      (1, 'Software', 1.11, 2.12, 3.133),
      (2, 'Software', 2.11, 2.22, 3.233),
      (3, 'Software', 3.11, 2.32, 3.333),
      (4, 'Software', 1.41, 2.42, 3.343),
      (5, 'Software', 1.51, 2.52, 3.353),
      (6, 'Software', 1.61, 2.26, 3.363),
      (7, 'Software', 1.17, 2.27, 3.337),
      (8, 'Software', 1.18, 2.28, 3.338),
      (9, 'Software', 1.19, 2.29, 3.339),
      (10, 'Software', 1.01, 2.02, 3.303),
      (1, 'Database', 1.11, 2.12, 3.133),
      (2, 'Database', 2.11, 2.22, 3.233),
      (3, 'Database', 3.11, 2.32, 3.333),
      (4, 'Database', 1.41, 2.42, 3.343),
      (5, 'Database', 1.51, 2.52, 3.353),
      (6, 'Database', 1.61, 2.26, 3.363),
      (7, 'Database', 1.17, 2.27, 3.337),
      (8, 'Database', 1.18, 2.28, 3.338),
      (9, 'Database', 1.19, 2.29, 3.339),
      (10, 'Database', 1.01, 2.02, 3.303);
      INSERT 0 30
      -- GaussDB:
      m_db=# SELECT * FROM test_n;
       col_unumeric1 | col_znumeric2 | col_znumeric3 
      ---------------+---------------+---------------
               1.010 |          2.02 |        03.303
               1.190 |          2.29 |        03.339
               1.180 |          2.28 |        03.338
      m_db=# SELECT * FROM test_n_2;
       col_unumeric1 | col_znumeric2 | col_znumeric3 
      ---------------+---------------+---------------
               1.180 |          2.28 |        03.338
               1.190 |          2.29 |        03.339
               1.010 |          2.02 |        03.303
      m_db=# SELECT std(col_unumeric1*(col_znumeric2 | col_znumeric3)) FROM test_n_2 ;
               std         
      ---------------------
       0.24779023386727736
      (1 row)
      m_db=# SELECT std(col_unumeric1*(col_znumeric2 | col_znumeric3)) FROM test_n ;
               std         
      ---------------------
       0.24779023386727742
      (1 row)
      
      m_db=# SELECT std(col_unumeric1*(col_znumeric2 | col_znumeric3)) FROM fun_op_case_tb_1 GROUP BY name ORDER BY name;
              std         
      --------------------
       1.8167446160646796
       1.8167446160646794
       1.8167446160646796
      (3 rows)
      
      --MySQL:
      mysql> SELECT * FROM test_n;
      +---------------+---------------+---------------+
      | col_unumeric1 | col_znumeric2 | col_znumeric3 |
      +---------------+---------------+---------------+
      |         1.010 |          2.02 |        03.303 |
      |         1.190 |          2.29 |        03.339 |
      |         1.180 |          2.28 |        03.338 |
      +---------------+---------------+---------------+
      3 rows in set (0.00 sec)
      mysql> SELECT *FROM test_n_2;
      +---------------+---------------+---------------+
      | col_unumeric1 | col_znumeric2 | col_znumeric3 |
      +---------------+---------------+---------------+
      |         1.180 |          2.28 |        03.338 |
      |         1.190 |          2.29 |        03.339 |
      |         1.010 |          2.02 |        03.303 |
      +---------------+---------------+---------------+
      3 rows in set (0.00 sec)
      mysql>  SELECT std(col_unumeric1*(col_znumeric2 | col_znumeric3)) FROM test_n_2 ;
      +----------------------------------------------------+
      | std(col_unumeric1*(col_znumeric2 | col_znumeric3)) |
      +----------------------------------------------------+
      |                                0.24779023386727736 |
      +----------------------------------------------------+
      1 row in set (0.00 sec)
      mysql>  SELECT std(col_unumeric1*(col_znumeric2 | col_znumeric3)) FROM test_n;
      +----------------------------------------------------+
      | std(col_unumeric1*(col_znumeric2 | col_znumeric3)) |
      +----------------------------------------------------+
      |                                0.24779023386727742 |
      +----------------------------------------------------+
      1 row in set (0.00 sec)
      
      mysql> SELECT std(col_unumeric1*(col_znumeric2 | col_znumeric3)) FROM fun_op_case_tb_1 GROUP BY name ORDER BY name;
      +----------------------------------------------------+
      | std(col_unumeric1*(col_znumeric2 | col_znumeric3)) |
      +----------------------------------------------------+
      |                                 1.8167446160646794 |
      |                                 1.8167446160646794 |
      |                                 1.8167446160646794 |
      +----------------------------------------------------+
      3 rows in set (0.00 sec)
      
      -- Delete the base table.
      DROP TABLE test_n;
      DROP TABLE
      DROP TABLE test_n_2;
      DROP TABLE
      DROP TABLE fun_op_case_tb_1;
      DROP TABLE
    • For example, if WITH ROLLUP is used together with the aggregate function, the execution sequence of the function is changed. As a result, the result is inconsistent with that in MySQL.
      -- Prepare a base table.
      CREATE TABLE IF NOT EXISTS t1 (name VARCHAR(20), c1 INT(100), c2 FLOAT(7,5));
      INSERT INTO t1 VALUES
      ('Computer', 666,-55.155),
      ('Computer', 789, -15.593),
      ('Computer', 928,-53.963),
      ('Computer', 666, -54.555),
      ('Computer', 666,-55.555),
      ('Database', 666,-55.155),
      ('Database', 789, -15.593),
      ('Database', 928,-53.963),
      ('Database', 666, -54.555),
      ('Database', 666,-55.555);
      
      -- GaussDB:
      m_db=# select name, std(c1/c2) c5 from t1  group by name with rollup;
        name  |         c5         
      --------+--------------------
       Database | 15.02396266299967
       Computer | 15.023962662999669
              |  15.02396266299967
      (3 rows)
      
      --MySQL
      mysql> select name, std(c1/c2) c5 from t1  group by name with rollup;
      +-----------+--------------------+
      | name      | c5                 |
      +-----------+--------------------+
      | Database | 15.023962662999669 |
      | Computer | 15.023962662999669 |
      | NULL      |  15.02396266299967 |
      +-----------+--------------------+
      3 rows in set (0.00 sec)
      
      -- Delete the base table.
      DROP TABLE t1;
      DROP TABLE
  • If GROUP BY is used together with the aggregate function and the intermediate result of the DECIMAL data type is involved in calculation, data distortion occurs in MySQL, and GaussDB retains data in full precision.
    -- Prepare a base table.
    CREATE TABLE IF NOT EXISTS fun_op_case_tb_1 (id int,name varchar(20),col_znumeric2 DECIMAL(3,2) zerofill,col_znumeric3 DEC(5,3) zerofill, col_bit1 BIT(3), col_time2 time);
    
    INSERT INTO fun_op_case_tb_1 VALUES
    (1, 'Computer', 0.01, 3.130, b'101', '08:30:23.01'),
    (2, 'Computer', 1.20, 30.990, b'101', '08:30:23.01'),
    (3, 'Computer', 1.33, 43.500, b'101', '08:30:23.01'),
    (4, 'Computer', 2.24, 30.990, b'101', '08:30:23.01'),
    (5, 'Computer', 1.25, 43.600, b'101', '08:30:23.01'),
    (6, 'Computer', 2.20, '20.900', b'101', '08:30:23.01'),
    (7, 'Computer', 2.20, '20.900', b'101', '08:30:23.01'),
    (8, 'Computer', 2.20, '20.900', b'101', '08:30:23.01'),
    (9, 'Computer', 2.29, '22.780', b'101', '08:30:23.01'),
    (10, 'Computer', 2.02, '20.900', b'101', '08:30:23.01')
    
    -- GaussDB:
    m_db=# SET m_format_behavior_compat_options= 'enable_precision_decimal';
    m_db=# SELECT avg(col_znumeric3/col_znumeric2) FROM fun_op_case_tb_1 WHERE id<=10 GROUP BY name;
          avg       
    ----------------
     46.90407212526
    (1 row)
    m_db=# SELECT sum(col_bit1/col_time2) FROM fun_op_case_tb_1 WHERE id<=10 GROUP BY name;
      sum   
    --------
     0.0006
    (1 rows)
    
    --MySQL:
    mysql>  SELECT avg(col_znumeric3/col_znumeric2) FROM fun_op_case_tb_1 WHERE id<=10 GROUP BY name;
    +----------------------------------+
    | avg(col_znumeric3/col_znumeric2) |
    +----------------------------------+
    |                   46.90407213000 |
    +----------------------------------+
    1 row in set (0.00 sec)
    mysql> SELECT sum(col_bit1/col_time2) FROM fun_op_case_tb_1 WHERE id<=10 GROUP BY name;
    +-------------------------+
    | sum(col_bit1/col_time2) |
    +-------------------------+
    |                  0.0010 |
    +-------------------------+
    1 row in set (0.00 sec)
    -- Delete a base table.
    DROP TABLE fun_op_case_tb_1;
    DROP TABLE

Utilizamos cookies para mejorar nuestro sitio y tu experiencia. Al continuar navegando en nuestro sitio, tú aceptas nuestra política de cookies. Descubre más

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback