
GaussDB

MySQL Compatibility(Centralized)

Issue 01

Date 2024-12-05

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 Introduction.. 1

2 MySQL Compatibility in B-Compatible Mode...2
2.1 MySQL Compatibility Overview... 2
2.2 Data Types... 2
2.2.1 Numeric Data Types..3
2.2.2 Date and Time Data Types...11
2.2.3 String Data Types.. 27
2.2.4 Binary Data Types... 32
2.2.5 JSON Data Type... 35
2.2.6 Attributes Supported by Data Types... 35
2.2.7 Data Type Conversion.. 35
2.3 System Functions.. 38
2.3.1 Flow Control Functions..39
2.3.2 Date and Time Functions..42
2.3.3 String Functions... 57
2.3.4 Forced Conversion Functions... 64
2.3.5 Encryption Functions.. 64
2.3.6 Information Functions... 64
2.3.7 JSON Functions.. 65
2.3.8 Aggregate Functions.. 67
2.3.9 Arithmetic Functions.. 69
2.3.10 Other Functions... 69
2.4 Operators... 70
2.5 Character Sets.. 72
2.6 Collation Rules... 72
2.7 Expressions.. 73
2.8 SQL...74
2.8.1 DDL...74
2.8.2 DML.. 88
2.8.3 DCL... 101
2.9 Drivers.. 102
2.9.1 JDBC... 102
2.9.1.1 JDBC API Reference... 102

GaussDB
MySQL Compatibility(Centralized) Contents

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

3 MySQL Compatibility in M-Compatible Mode...103
3.1 MySQL Compatibility Overview.. 103
3.2 Data Types.. 104
3.2.1 Numeric Data Types... 105
3.2.2 Date and Time Data Types.. 108
3.2.3 String Data Types.. 112
3.2.4 Binary Data Types... 118
3.2.5 JSON.. 125
3.2.6 Attributes Supported by Data Types.. 125
3.2.7 Data Type Conversion..126
3.3 System Functions.. 147
3.3.1 Flow Control Functions... 148
3.3.2 Date and Time Functions... 150
3.3.3 String Functions... 158
3.3.4 Forced Conversion Functions.. 164
3.3.5 Encryption Functions... 166
3.3.6 Comparison Functions... 167
3.3.7 Aggregate Functions.. 169
3.3.8 JSON Functions.. 178
3.3.9 Window Functions.. 181
3.3.10 Arithmetic Functions... 183
3.3.11 Network Address Functions.. 188
3.3.12 Other Functions...188
3.4 Operators.. 192
3.5 Character Sets.. 209
3.6 Collation Rules...210
3.7 Transactions.. 211
3.8 SQL.. 217
3.8.1 Keywords.. 218
3.8.2 Identifiers... 219
3.8.3 DDL.. 221
3.8.4 DML... 259
3.8.5 DCL... 293
3.8.6 Other Statements..298
3.8.7 Users and Permissions... 300
3.8.8 System Catalogs and System Views... 307
3.9 Unplanned Application Lossless and Transparent...312
3.9.1 Flow Control Functions... 313
3.9.2 Date and Time Functions... 313
3.9.3 String Functions... 315
3.9.4 Forced Conversion Functions.. 317
3.9.5 Encryption Functions... 317

GaussDB
MySQL Compatibility(Centralized) Contents

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

3.9.6 Comparison Functions... 317
3.9.7 Aggregate Functions.. 318
3.9.8 JSON Functions.. 318
3.9.9 Window Functions.. 319
3.9.10 Arithmetic Functions... 320
3.9.11 Network Address Functions.. 321
3.9.12 Other Functions...321

GaussDB
MySQL Compatibility(Centralized) Contents

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

1 Introduction

This document compares GaussDB (B-compatible mode and M-compatible mode)
with MySQL 5.7. MySQL Compatibility in B-Compatible Mode describes the
MySQL compatibility in B-compatible mode, and MySQL Compatibility in M-
Compatible Mode describes the MySQL compatibility in M-compatible mode.

GaussDB
MySQL Compatibility(Centralized) 1 Introduction

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

2 MySQL Compatibility in B-Compatible
Mode

2.1 MySQL Compatibility Overview
This chapter compares the MySQL 5.7 compatibility mode in GaussDB (that is,
when sql_compatibility is set to 'B', b_format_version is set to '5.7', and
b_format_dev_version is set to 's1') with MySQL 5.7. Only compatibility features
added later than GaussDB Kernel 503.0.0 are described. You are advised to view
the specifications and restrictions of the features in Developer Guide.

GaussDB is compatible with MySQL in terms of data types, SQL functions, and
database objects.

The underlying framework implementation of the GaussDB is different from that
of MySQL. Therefore, there are still some differences between GaussDB and
MySQL.

2.2 Data Types
The data types of GaussDB are the same as those of MySQL in most function
scenarios, but there are some differences.

● Unless otherwise specified, the precision, scale, and number of bits of some
data types cannot be defined as floating-point values. You are advised to use
valid integer values.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

2.2.1 Numeric Data Types

Table 2-1 Integer types

No. MySQL GaussDB Difference

1 BOOL Not fully
compatible.

MySQL: The BOOL/BOOLEAN type is
actually mapped to the TINYINT type.
GaussDB: BOOL is supported.
● Valid literal values for the "true" state

include: TRUE, 't', 'true', 'y', 'yes', '1',
'TRUE', true, 'on', and all non-zero
values.

● Valid literal values for the "false" state
include: FALSE, 'f', 'false', 'n', 'no', '0', 0,
'FALSE', false, and 'off'.

TRUE and FALSE are standard expressions,
compatible with SQL statements.

2 BOOLEAN Not fully
compatible.

3 TINYINT[(M
)]
[UNSIGNED
]

Supported For details, see the following note.

4 SMALLINT[(
M)]
[UNSIGNED
]

Supported For details, see the following note.

5 MEDIUMIN
T[(M)]
[UNSIGNED
]

Supported MySQL requires 3 bytes to store
MEDIUMINT data.
● The signed range is –8388608 to

+8388607.
● The unsigned range is 0 to +16777215.
GaussDB maps data to the INT type and
requires 4 bytes for storage.
● The signed range is –2147483648 to

+2147483647.
● The unsigned range is 0 to

+4294967295.
For other differences, see the following
note.

6 INT[(M)]
[UNSIGNED
]

Supported For details, see the following note.

7 INTEGER[(M
)]
[UNSIGNED
]

Supported For details, see the following note.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

No. MySQL GaussDB Difference

8 BIGINT[(M)
]
[UNSIGNED
]

Supported For details, see the following note.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

NO TE

● Input formats:

● MySQL

For characters such as "asbd", "12dd", and "12 12", the system truncates them or
returns 0 and reports a WARNING message. Data fails to be inserted into a table in
strict mode.

● GaussDB

● For integer types (TINYINT, SMALLINT, MEDIUMINT, INT, INTEGER, and
BIGINT), if the invalid part of a character string is truncated, for example,
"12@3", no message is displayed. Data is successfully inserted into a table.

● If the whole integer is truncated (for example, "@123") or the character
string is empty, 0 is returned and data is successfully inserted into a table.

● Operators:

● +, -, and *

GaussDB: When INT, INTEGER, SMALLINT, or BIGINT is used for calculation, a value
of the original type is returned and is not changed to a larger type. If the return
value exceeds the range, an error is reported.

MySQL: The value can be changed to BIGINT for calculation.

● |, &, ^, and ~

GaussDB: The value is calculated in the bits occupied by the type. In GaussDB, ^
indicates the exponentiation operation. If the XOR operator is required, replace it
with #.

MYSQL: The value is changed to a larger type for calculation.

● Explicit type conversion of negative numbers:

GaussDB: The result is 0 in loose mode and an error is reported in strict mode.

MySQL: The most significant bit is replaced with a numeric bit based on the
corresponding binary value, for example, (-1)::uint4 = 4294967295.

● Other differences:

The precision of INT[(M)] controls formatted output in MySQL. GaussDB supports only
the syntax but does not support the function.

● Aggregate function:

● variance: indicates the sample variance in GaussDB and the population variance in
MySQL.

● stddev: indicates the sample standard deviation in GaussDB and the overall
standard deviation in MySQL.

● Display width:

● If ZEROFILL is not specified when the width information is specified for an integer
column, the width information is not displayed in the table structure description.

● When the INSERT statement is used to insert a column of the character type,
GaussDB pads 0s before inserting the column.

● The JOIN USING statement involves type derivation. In MySQL, the first table
column is used by default. In GaussDB, if the result is of the signed type, the width
information is invalid. Otherwise, the width of the first table column is used.

● For GREATEST/LEAST, IFNULL/IF, and CASE WHEN/DECODE, MySQL does not pad
0s. In GaussDB, 0s are padded when the type and width information is consistent.

● MySQL supports this function when it is used as the input or output parameter or
return value of a function or stored procedure. GaussDB neither reports syntax
errors nor supports this function.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

Table 2-2 Arbitrary precision types

No. MySQL GaussDB Difference

1 DECIMAL[(
M[,D])]

Supported ● Operator: In GaussDB, "^" indicates the
exponentiation operation. If the XOR
operator is required, replace it with "#".
In MySQL, "^" indicates the XOR
operation.

● Value range: The precision M and scale
D support only integers and do not
support floating-point values.

● Input format: No error is reported when
all input parameters of a character string
(for example, '@123') are truncated. An
error is reported only when it is partially
truncated, for example, '12@3'.

2 NUMERIC[(
M[,D])]

Supported

3 DEC[(M[,D])
]

Supported

4 FIXED[(M[,D
])]

Not
supported

-

Table 2-3 Floating-point types

No. MySQL GaussDB Difference

1 FLOAT[(M,D
)]

Supported ● Partitioned table: The FLOAT data type
does not support partitioned tables with
the key partitioning policy.

● Operator: In GaussDB, "^" indicates the
exponentiation operation. If the XOR
operator is required, replace it with "#".
In MySQL, "^" indicates the XOR
operation.

● Value range: The precision M and scale
D support only integers and do not
support floating-point values.

● Output format: An ERROR message is
reported for invalid input parameters. No
WARNING message is reported in loose
mode (that is, sql_mode is set to '').

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

No. MySQL GaussDB Difference

2 FLOAT(p) Supported ● Partitioned table: The FLOAT data type
does not support partitioned tables with
the key partitioning policy.

● Operator: The ^ operator is used for the
numeric types, which is different from
that in MySQL. In GaussDB, the ^
operator is used for exponential
calculation.

● Value range: When the precision p is
defined, only valid integer data types are
supported.

● Output format:
An ERROR message is reported for
invalid input parameters. No WARNING
message is reported in loose mode (that
is, sql_mode is set to '').

3 DOUBLE[(M
,D)]

Supported ● Partitioned table: The DOUBLE data type
does not support partitioned tables with
the key partitioning policy.

● Operator: In GaussDB, "^" indicates the
exponentiation operation. If the XOR
operator is required, replace it with "#".
In MySQL, "^" indicates the XOR
operation.

● Value range: The precision M and scale
D support only integers and do not
support floating-point values.

● Output format: An ERROR message is
reported for invalid input parameters. No
WARNING message is reported in loose
mode (that is, sql_mode is set to '').

4 DOUBLE
PRECISION[(
M,D)]

Supported ● Operator: In GaussDB, "^" indicates the
exponentiation operation. If the XOR
operator is required, replace it with "#".
In MySQL, "^" indicates the XOR
operation.

● Value range: The precision M and scale
D support only integers and do not
support floating-point values.

● Output format: An ERROR message is
reported for invalid input parameters. No
WARNING message is reported in loose
mode (that is, sql_mode is set to '').

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

No. MySQL GaussDB Difference

5 REAL[(M,D)
]

Supported ● Partitioned table: The REAL data type
does not support partitioned tables with
the key partitioning policy.

● Operator: In GaussDB, "^" indicates the
exponentiation operation. If the XOR
operator is required, replace it with "#".
In MySQL, "^" indicates the XOR
operation.

● Value range: The precision M and scale
D support only integers and do not
support floating-point values.

● Output format: An ERROR message is
reported for invalid input parameters. No
WARNING message is reported in loose
mode (that is, sql_mode is set to '').

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

Table 2-4 Sequential integers

No. MySQL GaussDB Difference

1 SERIAL Not fully
compatible.

For details about SERIAL, see Developer
Guide in GaussDB.
The differences in specifications are as
follows:
CREATE TABLE test(f1 serial, f2 CHAR(20));

● The SERIAL of MySQL is mapped to
BIGINT(20) UNSIGNED NOT NULL
AUTO_INCREMENT UNIQUE, and the
SERIAL of GaussDB is mapped to
INTEGER NOT NULL DEFAULT
nextval('test_f1_seq'::regclass). For
example:
-- Definition of MySQL SERIAL:
mysql> SHOW CREATE TABLE test\G
*************************** 1. row ***************************
 Table: test
Create Table: CREATE TABLE `test` (
 `f1` bigint(20) unsigned NOT NULL
AUTO_INCREMENT,
 `f2` char(20) DEFAULT NULL,
 UNIQUE KEY `f1` (`f1`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

-- Definition of GaussDB SERIAL
gaussdb=# \d+ test
 Table "public.test"
 Column | Type |
Modifiers | Storage | Stats target |
Description
--------+---------------
+---
+----------+--------------+-------------
 f1 | integer | not null default
nextval('test_f1_seq'::regclass) | plain | |
 f2 | character(20)
| | extended
| |
Has OIDs: no
Options: orientation=row, compression=no,
storage_type=USTORE

● The default values of the SERIAL type in
the INSERT scenario are different. For
example:
-- The inserted default value of the SERIAL type in
MySQL
mysql> INSERT INTO test VALUES(DEFAULT, 'aaaa');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO test VALUES(10, 'aaaa');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO test VALUES(DEFAULT, 'aaaa');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM test;
+----+------+
| f1 | f2 |
+----+------+

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

No. MySQL GaussDB Difference

1	aaaa
10	aaaa
11	aaaa
+----+------+
3 rows in set (0.00 sec)

-- The inserted default value of the SERIAL type in
GaussDB
gaussdb=# INSERT INTO test VALUES(DEFAULT,
'aaaa');
INSERT 0 1
gaussdb=# INSERT INTO test VALUES(10, 'aaaa');
INSERT 0 1
gaussdb=# INSERT INTO test VALUES(DEFAULT,
'aaaa');
INSERT 0 1
gaussdb=# SELECT * FROM test;
 f1 | f2
----+----------------------
 1 | aaaa
 2 | aaaa
 10 | aaaa
(3 rows)

● The reference columns of the SERIAL
type in the REPLACE scenario are
different. For details about the GaussDB
reference columns, see section
"REPLACE" in Developer Guide of
GaussDB. For example:
-- The inserted reference column value of the SERIAL
type in MySQL
mysql> REPLACE INTO test VALUES(f1, 'aaaa');
Query OK, 1 row affected (0.00 sec)

mysql> REPLACE INTO test VALUES(f1, 'bbbb');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM test;
+----+------+
| f1 | f2 |
+----+------+
| 1 | aaaa |
| 2 | bbbb |
+----+------+
2 rows in set (0.00 sec)

-- The inserted reference column value of the SERIAL
type in GaussDB
gaussdb=# REPLACE INTO test VALUES(f1, 'aaaa');
REPLACE 0 1
gaussdb=# REPLACE INTO test VALUES(f1, 'bbbb');
REPLACE 0 1
gaussdb=# SELECT * FROM test;
 f1 | f2
----+----------------------
 0 | aaaa
 0 | bbbb
(2 rows)

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

2.2.2 Date and Time Data Types

Table 2-5 Date and time data types

No. MySQL GaussDB Difference

1 DATE Supported. GaussDB supports the date data type.
Compared with MySQL, GaussDB has the
following differences in specifications:
● Input format

– GaussDB supports only the character
type and does not support the
numeric type. For example, the
format can be '2020-01-01' or
'20200101', but cannot be 20200101.
MySQL supports conversion from
numeric input to the date type.

– Separator: GaussDB does not support
the plus sign (+) or colon (:) as the
separator between the year, month,
and day. Other symbols are
supported. MySQL supports all
symbols as separators. Sometimes,
the mixed use of separators is not
supported, which is different from
MySQL, such as '2020-01>01' and
'2020/01+01'. You are advised to use
hyphens (-) or slashes (/) as
separators.

– No separator: You are advised to use
the complete format, for example,
'YYYYMMDD' or 'YYMMDD'. The
parsing rules of incomplete formats
(including the ultra-long format) are
different from those of MySQL. An
error may be reported or the parsing
result may be inconsistent with that
of MySQL. Therefore, the incomplete
format is not recommended.

● Output format
If the sql_mode parameter of GaussDB
does not contain 'strict_trans_tables'
(the strict mode is used unless otherwise
defined as the loose mode), the year,
month, and day can be set to 0.
However, the value is converted to a
valid value in the sequence of year,
month, and day. For example, date
'0000-00-10' is converted to 0002-12-10
BC. If the input is invalid or exceeds the
range, a warning message is reported

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

No. MySQL GaussDB Difference

and the value 0000-00-00 is returned.
MySQL outputs the date value as it is,
even if the year, month, and day are set
to 0.

● Value range
The value range of GaussDB is
4713-01-01 BC to 5874897-12-31 AD.
BC dates are supported. In loose mode,
if the value exceeds the range,
0000-00-00 is returned. In strict mode,
an error is reported. The value range of
MySQL is 0000-00-00 to 9999-12-31. In
loose mode, if the value exceeds the
range, the performance varies in
different scenarios. An error may be
reported (for example, in the SELECT
statement) or the value 0000-00-00
may be returned (for example, in the
INSERT statement). As a result, when
the date type is used as the input
parameter of the function, the results
returned by the function are different.

● Operator
– GaussDB supports only the

comparison operators =, !=, <, <=, >,
and >= between date types and
returns true or false. For the addition
operation between the date and
interval types, the return result is of
the date type. For the subtraction
operation between the date and
interval types, the return result is of
the date type. For the subtraction
operation between date types, the
return result is of the interval type.

– When the MySQL date type and
other numeric types are calculated,
the date type is converted to the
numeric type, and then the
calculation is performed based on the
numeric type. The result is also of the
numeric type. It is different from
GaussDB. For example:

-- MySQL: date+numeric. Convert the date type to
20200101 and add it to 1. The result is 20200102.
mysql> select date'2020-01-01' + 1;
+----------------------+
| date'2020-01-01' + 1 |
+----------------------+
| 20200102 |

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

No. MySQL GaussDB Difference

+----------------------+
1 row in set (0.00 sec)

-- GaussDB: date+numeric. Convert the numeric type
to the interval type (1 day), and then add them up
to obtain a new date.
gaussdb=# select date'2020-01-01' + 1;
 ?column?

 2020-01-02
(1 row)

● Type conversion
Compared with MySQL, GaussDB
supports conversion between the date
type and char(n), nchar(n), datetime, or
timestamp type, but does not support
conversion between the date type and
binary, decimal, JSON, integer, unsigned
integer, or time type. The principles for
determining common types in scenarios
such as collections and complex
expressions are different from those in
MySQL. For details, see Data Type
Conversion.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

No. MySQL GaussDB Difference

2 DATETIME[(f
sp)]

Supported. GaussDB supports the datetime data type.
Compared with MySQL, GaussDB has the
following differences in specifications:
● Input formats:

– GaussDB supports only the character
type and does not support the
numeric type. For example,
'2020-01-01 10:20:30.123456' or
'20200101102030.123456' is
supported, but
20200101102030.123456 is not
supported. MySQL supports
conversion from numeric input to the
datetime type.

– Separator: GaussDB does not support
the plus sign (+) or colon (:) as the
separator between the year, month,
and day. Other symbols are
supported. Only colons (:) can be
used as separators between hours,
minutes, and seconds. Sometimes,
the mixed use of separators is not
supported, which is different from
MySQL. Therefore, it is not
recommended. MySQL supports all
symbols as separators.

– No separator: The complete format
'YYYYMMDDhhmiss.ffffff' is
recommended. The parsing rules of
incomplete formats (including the
ultra-long format) may be different
from those of MySQL. An error may
be reported or the parsing result may
be inconsistent with that of MySQL.
Therefore, the incomplete format is
not recommended.

● Output formats:
– The format is 'YYYY-MM-DD

hh:mi:ss.ffffff', which is the same as
that of MySQL and is not affected by
the DateStyle parameter. However,
for the precision part, if the last
several digits are 0, they are not
displayed in GaussDB but displayed in
MySQL.

– If the sql_mode parameter of
GaussDB does not contain

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

No. MySQL GaussDB Difference

'strict_trans_tables' (the strict mode
is used unless otherwise defined as
the loose mode), the year, month,
and day can be set to 0. However, the
value is converted to a valid value in
the sequence of year, month, and
day. For example, datetime
'0000-00-10 00:00:00' is converted to
0002-12-10 00:00:00 BC. If the input
is invalid or exceeds the range, a
warning message is reported and the
value 0000-00-00 00:00:00 is
returned. MySQL outputs the
datetime value as it is, even if the
year, month, and day are set to 0.

● Value range
4713-11-24 00:00:00.000000 BC to
294277-01-09 04:00:54.775806 AD. If
the value is 294277-01-09
04:00:54.775807 AD, infinity is
returned. If the value exceeds the range,
GaussDB reports an error in strict mode.
Whether MySQL reports an error
depends on the application scenario.
Generally, no error is reported in the
query scenario. However, an error is
reported when the DML or SQL
statement is executed to change the
value of a table attribute. In loose mode,
GaussDB returns 0000-00-00 00:00:00.
MySQL may report an error, return
0000-00-00 00:00:00, or return null
based on the application scenario. As a
result, the execution result of the
function that uses the datetime type as
the input parameter is different from
that of MySQL.

● Precision
The value ranges from 0 to 6. For a
table column, the default value is 0,
which is the same as that in MySQL. In
the datetime[(p)]'str' expression,
GaussDB parses (p) as the precision.
The default value is 6, indicating that
'str' is formatted to the datetime type
based on the precision specified by p.
MySQL does not support the
datetime[(p)]'str' expression.

● Operator

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

No. MySQL GaussDB Difference

– GaussDB supports only the
comparison operators =, !=, <, <=, >,
and >= between datetime types and
returns true or false. For the addition
operation between the datetime and
interval types, the return result is of
the datetime type. For the
subtraction operation between the
datetime and interval types, the
return result is of the datetime type.
For the subtraction operation
between datetime types, the return
result is of the interval type.

– When the MySQL datetime type and
other numeric types are calculated,
the datetime type is converted to the
numeric type, and then the
calculation is performed based on the
numeric type. The result is also of the
numeric type. It is different from
GaussDB. For example:

-- MySQL: datetime+numeric. Convert the datetime
type to 20201010123456 and add it to 1. The result
is 20201010123457.
mysql> select cast('2020-10-10 12:34:56.123456' as
datetime) + 1;
+--+
| cast('2020-10-10 12:34:56.123456' as datetime) + 1
|
+--+
| 20201010123457 |
+--+
1 row in set (0.00 sec)

-- GaussDB: datetime+numeric. Convert the numeric
type to the interval type (1 day), and then add them
up to obtain the new datetime.
gaussdb=# select cast('2020-10-10 12:34:56.123456'
as datetime) + 1;
 ?column?

 2020-10-11 12:34:56
(1 row)
If the calculation result of the datetime
type and numeric type is used as the
input parameter of a function, the result
of the function may be different from
that of MySQL.

● Type conversion
Compared with MySQL, GaussDB
supports only conversion between the
datetime type and char(n), nchar(n),
and timestamp types, and conversion
from datetime to date and time types

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

No. MySQL GaussDB Difference

(only value assignment and explicit
conversion). The conversion between the
datetime type and the binary, decimal,
json, integer, or unsigned integer type is
not supported. The principles for
determining common types in scenarios
such as collections and complex
expressions are different from those in
MySQL. For details, see Data Type
Conversion.

● Time zone
In GaussDB, the datetime value can
carry the time zone information (time
zone offset or time zone name), for
example, '2020-01-01 12:34:56.123456
+01:00' or '2020-01-01 2:34:56.123456
CST'. GaussDB converts the time to the
time of the current server time zone.
MySQL 5.7 does not support this
function. MySQL 8.0 and later versions
support this function.

● The table columns of the datetime data
type in GaussDB are actually converted
to the timestamp(p) without time zone.
When you query the table information
or use a tool to export the table
structure, the data type of columns is
timestamp(p) without time zone instead
of datetime. For MySQL, datetime(p) is
displayed.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

No. MySQL GaussDB Difference

3 TIMESTAMP[
(fsp)]

Supported. GaussDB supports the timestamp data
type. Compared with MySQL, GaussDB has
the following differences in specifications:
● Input format

– It supports only the character type
and does not support the numeric
type. For example, '2020-01-01
10:20:30.123456' or
'20200101102030.123456' is
supported, but
20200101102030.123456 is not
supported. MySQL supports
conversion from numeric input to the
timestamp type.

– Separator: It does not support the
plus sign (+) or colon (:) as the
separator between the year, month,
and day. Other symbols are
supported. Only colons (:) can be
used as separators between hours,
minutes, and seconds. Sometimes,
the mixed use of separators is not
supported, which is different from
MySQL. Therefore, it is not
recommended. MySQL supports all
symbols as separators.

– No separator: The complete format
'YYYYMMDDhhmiss.ffffff' is
recommended. The parsing rules of
incomplete formats (including the
ultra-long format) may be different
from those of MySQL. An error may
be reported or the parsing result may
be inconsistent with that of MySQL.
Therefore, the incomplete format is
not recommended.

● Output format
– The format is 'YYYY-MM-DD

hh:mi:ss.ffffff', which is the same as
that of MySQL and is not affected by
the DateStyle parameter. However,
for the precision part, if the last
several digits are 0, they are not
displayed in GaussDB but displayed in
MySQL.

– If the sql_mode parameter of
GaussDB does not contain

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

No. MySQL GaussDB Difference

'strict_trans_tables' (the strict mode
is used unless otherwise defined as
the loose mode), the year, month,
and day can be set to 0. However, the
value is converted to a valid value in
the sequence of year, month, and
day. For example, timestamp
'0000-00-10 00:00:00' is converted to
0002-12-10 00:00:00 BC. If the input
is invalid or exceeds the range, a
warning message is reported and the
value 0000-00-00 00:00:00 is
returned. MySQL outputs the
timestamp value as it is, even if the
year, month, and day are set to 0.

● Value range
4713-11-24 00:00:00.000000 BC to
294277-01-09 04:00:54.775806 AD. If
the value is 294277-01-09
04:00:54.775807 AD, infinity is
returned. If the value exceeds the range,
GaussDB reports an error in strict mode.
Whether MySQL reports an error
depends on the application scenario.
Generally, no error is reported in the
query scenario. However, an error is
reported when the DML or SQL
statement is executed to change the
value of a table attribute. In loose mode,
GaussDB returns 0000-00-00 00:00:00.
MySQL may report an error, return
0000-00-00 00:00:00, or return null
based on the application scenario. As a
result, the execution result of the
function that uses the timestamp type
as the input parameter is different from
that of MySQL.

● Precision
The value ranges from 0 to 6. For a
table column, the default value is 0,
which is the same as that in MySQL. In
the timestamp[(p)] 'str' expression:
– GaussDB parses (p) as the precision.

The default value is 6, indicating that
'str' is formatted to the timestamp
type based on the precision specified
by p.

– The meaning of timestamp 'str' in
MySQL is the same as that in

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

No. MySQL GaussDB Difference

GaussDB. The default precision is 6.
However, timestamp(p) 'str' is parsed
as a function call. p is used as the
input parameter of the timestamp
function. The result returns a value of
the timestamp type, and 'str' is used
as the alias of the projection column.

● Operator
– GaussDB supports only the

comparison operators =, !=, <, <=, >,
and >= between timestamp types
and returns true or false. For the
addition operation between the
timestamp and interval types, the
return result is of the timestamp
type. For the subtraction operation
between the timestamp and interval
types, the return result is of the
timestamp type. For the subtraction
operation between timestamp types,
the return result is of the interval
type.

– When the MySQL timestamp type
and other numeric types are
calculated, the timestamp type is
converted to the numeric type, and
then the calculation is performed
based on the numeric type. The result
is also of the numeric type. It is
different from GaussDB. For example:

-- MySQL: timestamp+numeric. Convert the
timestamp type to 20201010123456.123456 and
add it to 1. The result is 20201010123457.123456.
mysql> select timestamp '2020-10-10
12:34:56.123456' + 1;
+--+
| timestamp '2020-10-10 12:34:56.123456' + 1 |
+--+
| 20201010123457.123456 |
+--+
1 row in set (0.00 sec)

-- GaussDB: timestamp+numeric. Convert the
numeric type to the interval type (1 day), and then
add them up to obtain a new timestamp.
gaussdb=# select timestamp '2020-10-10
12:34:56.123456' + 1;
 ?column?

 2020-10-11 12:34:56.123456
(1 row)
If the calculation result of the
timestamp type and numeric type is
used as the input parameter of a

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

No. MySQL GaussDB Difference

function, the result of the function may
be different from that of MySQL.

● Type conversion
Compared with MySQL, GaussDB
supports only conversion between
timestamp and char(n), varchar(n), and
datetime, and conversion from
timestamp to date and time (only value
assignment and explicit conversion). The
conversion between the timestamp type
and the binary, decimal, json, integer, or
unsigned integer type is not supported.
The principles for determining common
types in scenarios such as collections
and complex expressions are different
from those in MySQL. For details, see
Data Type Conversion.

● Time zone
In GaussDB, the timestamp value can
carry the time zone information (time
zone offset or time zone name), for
example, '2020-01-01 12:34:56.123456
+01:00' or '2020-01-01 2:34:56.123456
CST'. GaussDB converts the time to the
time of the current server time zone. If
the time zone of the server is changed,
the timestamp value is converted to the
timestamp of the new time zone.
MySQL 5.7 does not support this
function. MySQL 8.0 and later versions
support this function.

● The table columns of the timestamp
data type in GaussDB are actually
converted to the timestamp(p) with
time zone. When you query the table
information or use a tool to export the
table structure, the data type of
columns is timestamp(p) with time zone
instead of timestamp. For MySQL,
timestamp(p) is displayed.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

No. MySQL GaussDB Difference

4 TIME[(fsp)] Supported. GaussDB supports the time data type.
Compared with MySQL, GaussDB has the
following differences in specifications:
● Input format

– It supports only the character type
and does not support the numeric
type. For example, '1 10:20:30' or
'102030' is supported, but 102030 is
not supported. MySQL supports
conversion from numeric input to the
time type.

– Separator: GaussDB supports only
colons (:) as separators between
hours, minutes, and seconds. MySQL
supports all symbols as separators.

– No separator: The complete format
'hhmiss.ffffff' is recommended. The
parsing rules of incomplete formats
(including the ultra-long format) may
be different from those of MySQL. An
error may be reported or the parsing
result may be inconsistent with that
of MySQL. Therefore, the incomplete
format is not recommended.

– When negative values are entered for
minute, second, and precision,
GaussDB may ignore the first part of
a negative value, which is parsed as
0. For example, '00:00:-10' is parsed
as '00:00:00'. An error may also be
reported. For example, if
'00:00:-10000' is parsed, an error will
be reported. The result depends on
the range of the input value.
However, MySQL reports an error in
both cases.

● Output format
The format is hh:mi:ss.ffffff, which is the
same as that of MySQL. However, for
the precision part, if the last several
digits are 0, they are not displayed in
GaussDB but displayed in MySQL.

● Value range
–838:59:59.000000 to 838:59:59.000000,
which is the same as that of MySQL. In
GaussDB loose mode, if a value exceeds
the range, the nearest boundary value –
838:59:59 or 838:59:59 is returned,

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

No. MySQL GaussDB Difference

regardless of the query or DML
operations such as insert and update. In
MySQL, an error is reported during
query, or the nearest boundary value is
returned after a DML operation. As a
result, when the time type is used as the
input parameter of the function, the
results returned by the function are
different.

● Precision
The value ranges from 0 to 6. For a
table column, the default value is 0,
which is the same as that in MySQL. In
the time(p) 'str' expression, GaussDB
parses (p) as the precision. The default
value is 6, indicating that 'str' is
formatted to the time type based on the
precision specified by p. MySQL parses it
as a time function, p is an input
parameter, and 'str' is the alias of the
projection column.

● Operator
– GaussDB supports only the

comparison operators =, !=, <, <=, >,
and >= between time types and
returns true or false. For the addition
operation between the time and
interval types, the return result is of
the time type. For the subtraction
operation between the time and
interval types, the return result is of
the time type. For the subtraction
operation between time types, the
return result is of the interval type.

– When the MySQL time type and
other numeric types are calculated,
the time type is converted to the
numeric type, and then the
calculation is performed based on the
numeric type. The result is also of the
numeric type. It is different from
GaussDB. For example:

-- MySQL: time+numeric. Convert the time type to
123456 and add it to 1. The result is 123457.
mysql> select time '12:34:56' + 1;
+---------------------+
| time '12:34:56' + 1 |
+---------------------+
| 123457 |
+---------------------+
1 row in set (0.00 sec)

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

No. MySQL GaussDB Difference

-- GaussDB: time+numeric. Convert the numeric type
to the interval type (1 day), and then add them up
to obtain the new time. Because 24 hours are added,
the obtained time is still 12:34:56.
gaussdb=# select time '12:34:56' + 1;
 ?column?

 12:34:56
(1 row)
If the calculation result of the time type
and numeric type is used as the input
parameter of a function, the result of
the function may be different from that
of MySQL.

● Type conversion
Compared with MySQL, GaussDB
supports only conversion between the
time type and char(n) or nchar(n) type,
and conversion between the datetime or
timestamp type and time type. The
conversion between the time type and
binary, decimal, date, JSON, integer, or
unsigned integer type is not supported.
The principles for determining common
types in scenarios such as collections
and complex expressions are different
from those in MySQL. For details, see
Data Type Conversion.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

No. MySQL GaussDB Difference

5 YEAR[(4)] Supported. GaussDB supports the year data type.
Compared with MySQL, GaussDB has the
following differences in specifications:
● Operator

– GaussDB supports only the
comparison operators =, !=, <, <=, >,
and >= between year types and
returns true or false.

– GaussDB supports only the arithmetic
operators + and - between the year
and int4 types and returns integer
values. MySQL returns unsigned
integer values.

● Type conversion
Compared with MySQL, GaussDB
supports only the conversion between
the year type and int4 type, and
supports only the conversion from the
int4, varchar, numeric, date, time,
timestamp, or timestamptz type to the
year type. The principles for determining
common types in scenarios such as
collections and complex expressions are
different from those in MySQL. For
details, see Data Type Conversion.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

No. MySQL GaussDB Difference

6 INTERVAL Supported. GaussDB supports the INTERVAL data type,
but INTERVAL is an expression in MySQL.
The differences are as follows:
● The date input of the character string

type cannot be used as an operation, for
example, select '2023-01-01' + interval 1
day.

● In the INTERVAL expr unit syntax, expr
cannot be a negative integer or floating-
point number, for example, select
date'2023-01-01' + interval -1 day.

● In the INTERVAL expr unit syntax, expr
cannot be the input of an operation
expression, for example, select
date'2023-01-01' + interval 4/2 day.

● When the INTERVAL expression is used
for calculation, the return value is of the
datetime type. For MySQL, the return
value is of the datetime or date type.
The calculation logic is the same as that
of GaussDB but different from that of
MySQL.

● In the INTERVAL expr unit syntax, the
value range of expr varies with the unit.
The maximum value range is [–
2147483648, 2147483647]. If the value
exceeds the range, an error is reported
in strict mode, and a warning is reported
in loose mode and 0 is returned.

● In the INTERVAL expr unit syntax, if the
number of columns specified by expr is
greater than the expected number of
columns in unit, an error is reported in
strict mode, and a warning is reported in
loose mode and 0 is returned. For
example, if the value of unit is
DAY_HOUR, the expected number of
columns is 2. If the value of expr is
'1-2-3', the expected number of columns
is 3.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

2.2.3 String Data Types

Table 2-6 String data types

No. MySQL GaussDB Difference

1 CHAR[(M)] Supported ● Input format
– The length of parameters and return

values of GaussDB user-defined
functions cannot be verified. The
length of stored procedure
parameters cannot be verified. In
addition, correct spaces cannot be
supplemented when
PAD_CHAR_TO_FULL_LENGTH is
enabled. However, MySQL supports
these functions.

– GaussDB does not support escape
characters or double quotation
marks (""). MySQL supports these
inputs.

● Syntax
The CAST(expr as char) syntax of
GaussDB cannot convert the input
string to the corresponding type based
on the string length. It can only be
converted to the varchar type. CAST(''
as char) and CAST('' as char(0)) cannot
convert an empty string to the char(0)
type. MySQL supports conversion to the
corresponding type by length.

● Operator
– GaussDB can convert a character

string to a floating-point value and
perform the modulo operation on
the character string and integer
value. The return value is an integer.
MySQL returns a floating-point
value.

– If a value is divided by 0, GaussDB
reports an error, and MySQL returns
null.

– "~": returns a negative number in
GaussDB and an 8-byte unsigned
integer in MySQL.

– "^": indicates a power in GaussDB
and a bitwise XOR in MySQL.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

No. MySQL GaussDB Difference

2 VARCHAR(M
)

Supported ● Input format:
– The length of parameters and return

values of GaussDB user-defined
functions cannot be verified. The
length of stored procedure
parameters cannot be verified.
However, MySQL supports these
functions.

– The length of temporary variables in
GaussDB user-defined functions and
stored procedures can be verified,
and an error or truncation alarm is
reported in strict or loose mode.
However, MySQL does not support
these functions.

– GaussDB does not support escape
characters or double quotation
marks (""). MySQL supports these
inputs.

● Operator
– GaussDB can convert a character

string to a floating-point value and
perform the modulo operation on
the character string and integer
value. The return value is an integer.
MySQL returns a floating-point
value.

– If a value is divided by 0, GaussDB
reports an error, and MySQL returns
null.

– "~": returns a negative number in
GaussDB and an 8-byte unsigned
integer in MySQL.

– "^": indicates a power in GaussDB
and a bitwise XOR in MySQL.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

No. MySQL GaussDB Difference

3 TINYTEXT Supported ● Input format
– The length limit in GaussDB is 1 GB,

not 255 bytes. If the length exceeds
the limit, no error or truncation
alarm is reported in strict or loose
mode. However, MySQL supports
these functions.

– GaussDB does not support escape
characters or double quotation
marks (""). MySQL supports these
inputs.

● Operator
– GaussDB can convert a character

string to a floating-point value and
perform the modulo operation on
the character string and integer
value. The return value is an integer.
MySQL returns a floating-point
value.

– If a value is divided by 0, GaussDB
reports an error, and MySQL returns
null.

– "~": returns a negative number in
GaussDB and an 8-byte unsigned
integer in MySQL.

– "^": indicates a power in GaussDB
and a bitwise XOR in MySQL.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

No. MySQL GaussDB Difference

4 TEXT Supported ● Input format
– The length limit in GaussDB is 1 GB,

not 65535 bytes. If the length
exceeds the limit, no error or
truncation alarm is reported in strict
or loose mode. However, MySQL
supports these functions.

– GaussDB does not support escape
characters or double quotation
marks (""). MySQL supports these
inputs.

● Operator
– GaussDB can convert a character

string to a floating-point value and
perform the modulo operation on
the character string and integer
value. The return value is an integer.
MySQL returns a floating-point
value.

– If a value is divided by 0, GaussDB
reports an error, and MySQL returns
null.

– "~": returns a negative number in
GaussDB and an 8-byte unsigned
integer in MySQL.

– "^": indicates a power in GaussDB
and a bitwise XOR in MySQL.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

No. MySQL GaussDB Difference

5 MEDIUMTEX
T

Supported ● Input format
– The length limit in GaussDB is 1 GB,

not 16777215 bytes. If the length
exceeds the limit, no error or
truncation alarm is reported in strict
or loose mode. However, MySQL
supports these functions.

– GaussDB does not support escape
characters or double quotation
marks (""). MySQL supports these
inputs.

● Operator
– GaussDB can convert a character

string to a floating-point value and
perform the modulo operation on
the character string and integer
value. The return value is an integer.
MySQL returns a floating-point
value.

– If a value is divided by 0, GaussDB
reports an error, and MySQL returns
null.

– "~": returns a negative number in
GaussDB and an 8-byte unsigned
integer in MySQL.

– "^": indicates a power in GaussDB
and a bitwise XOR in MySQL.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

No. MySQL GaussDB Difference

6 LONGTEXT Supported ● Input format
– GaussDB supports a maximum of 1

GB, and MySQL supports a
maximum of 4 GB minus 1 byte.

– GaussDB does not support escape
characters or double quotation
marks (""). MySQL supports these
inputs.

● Operator
– GaussDB can convert a character

string to a floating-point value and
perform the modulo operation on
the character string and integer
value. The return value is an integer.
MySQL returns a floating-point
value.

– If a value is divided by 0, GaussDB
reports an error, and MySQL returns
null.

– "~": returns a negative number in
GaussDB and an 8-byte unsigned
integer in MySQL.

– "^": indicates a power in GaussDB
and a bitwise XOR in MySQL.

7 ENUM('value
1','value2',...)

Not
supported

-

8 SET('value1','
value2',...)

Supported -

2.2.4 Binary Data Types

Table 2-7 Binary data types

No. MySQL GaussDB Difference

1 BINARY[(M)] Not
supported

-

2 VARBINARY(
M)

Not
supported

-

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

No. MySQL GaussDB Difference

3 TINYBLOB Supported ● Value range: The value is of the BYTEA
type. The length limit is 1 GB, not 255
bytes. If the length exceeds the limit, no
error or truncation alarm is reported in
strict or loose mode.

● Input format: Escape characters and
double quotation marks ("") are not
supported.

● Output format: For the '\0' character,
the query result is displayed as '\000'. If
the getBytes API of the JDBC driver is
used, the result is the '\0' character.

● Operator: Arithmetic operators (+, -, *, /,
and %) are not supported. Common
logical operators OR, AND, NOT (||, &&,
and !) are not supported. Common
bitwise operators (~, &, |, and ^) are not
supported.

4 BLOB Supported ● Value range: The value is of the BYTEA
type. The length limit is 1 GB, not
65535 bytes. If the length exceeds the
limit, no error or truncation alarm is
reported in strict or loose mode.
However, MySQL supports these
functions.

● Input format: Escape characters and
double quotation marks ("") are not
supported.

● Output format: For the '\0' character,
the query result is displayed as '\000'. If
the getBytes API of the JDBC driver is
used, the result is the '\0' character.

● Operator: Arithmetic operators (+, -, *, /,
and %) are not supported. Common
logical operators OR, AND, NOT (||, &&,
and !) are not supported. Common
bitwise operators (~, &, |, and ^) are not
supported.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

No. MySQL GaussDB Difference

5 MEDIUMBLO
B

Supported ● Value range: The value is of the BYTEA
type. The length limit is 1 GB, not
16777215 bytes. If the length exceeds
the limit, no error or truncation alarm is
reported in strict or loose mode.
However, MySQL supports these
functions.

● Input format: Escape characters and
double quotation marks ("") are not
supported.

● Output format: For the '\0' character,
the query result is displayed as '\000'. If
the getBytes API of the JDBC driver is
used, the result is the '\0' character.

● Operator: Arithmetic operators (+, -, *, /,
and %) are not supported. Common
logical operators OR, AND, NOT (||, &&,
and !) are not supported. Common
bitwise operators (~, &, |, and ^) are not
supported.

6 LONGBLOB Supported ● Value range: The value is of the BYTEA
type. The upper limit is 1 GB. For details
about the range, see the centralized and
distributed specifications of the BYTEA
data type.

● Input format: Escape characters and
double quotation marks ("") are not
supported.

● Output format: For the '\0' character,
the query result is displayed as '\000'. If
the getBytes API of the JDBC driver is
used, the result is the '\0' character.

● Operator: Arithmetic operators (+, -, *, /,
and %) are not supported. Common
logical operators OR, AND, NOT (||, &&,
and !) are not supported. Common
bitwise operators (~, &, |, and ^) are not
supported.

7 BIT[(M)] Not
supported

-

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

2.2.5 JSON Data Type

Table 2-8 JSON data type

No. MySQL GaussDB

1 JSON Not fully compatible

2.2.6 Attributes Supported by Data Types

Table 2-9 Attributes supported by data types

No. MySQL GaussDB

1 NULL Supported

2 NOT NULL Supported

3 DEFAULT Supported

4 ON UPDATE Supported

4 PRIMARY KEY Supported

5 AUTO_INCREMENT Supported

6 CHARACTER SET name Supported

7 COLLATE name Supported

2.2.7 Data Type Conversion
Conversion between different data types is supported. Data type conversion is
involved in the following scenarios:

● The data types of operands of operators (such as comparison and arithmetic
operators) are inconsistent. It is commonly used for comparison operations in
query conditions or join conditions.

● The data types of arguments and parameters are inconsistent when a
function is called.

● The data types of target columns to be updated by DML statements
(including INSERT, UPDATE, MERGE, and REPLACE) and the defined column
types are inconsistent.

● Explicit type conversion: cast(expr as datatype), which converts an expression
to a data type.

● After the target data type of the final projection column is determined by set
operations (UNION, MINUS, EXCEPT, and INTERSECT), the type of the
projection column in each SELECT statement is inconsistent with the target
data type.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

● In other expression calculation scenarios, the target data type used for
comparison or final result is determined based on the data type of different
expressions.

– DECODE

– CASE WHEN

– lexpr [NOT] IN (expr_list)

– BETWEEN AND

– JOIN USING(a,b)

– GREATEST and LEAST

– NVL and COALESCE

GaussDB and MySQL have different rules for data type conversion and target data
types. The following examples show the differences between the two processing
modes:

-- MySQL: The execution result of IN is 0, indicating false. According to the rule, '1970-01-01' is compared
with the expressions in the list in sequence. The results are all 0s. Therefore, the final result is 0.
mysql> select '1970-01-01' in ('1970-01-02', 1, '1970-01-02');
+---+
| '1970-01-01' in ('1970-01-02', 1, '1970-01-02') |
+---+
| 0 |
+---+

-- GaussDB: The execution result of IN is true, which is opposite to the MySQL result. The common type
selected based on the rule is int. Therefore, the left expression '1970-01-01' is converted to the int type and
compared with the value after the expression in the list is converted to the int type.
-- When '1970-01-01' and '1970-01-02' are converted to the int type, the values are 1970. (In MySQL-
compatible mode, invalid characters and the following content are ignored during conversion, and the
previous part is converted to the int type.) The comparison result is equal. Therefore, the returned result is
true.
gaussdb=# select '1970-01-01' in ('1970-01-02', 1::int, '1970-01-02') as result;
 result

 t
(1 row)

1. Differences in data type conversion rules:

● The GaussDB clearly defines the conversion rules between different data
types.

– Whether to support conversion: Conversion is supported only when the
conversion path of two types is defined in the pg_cast system catalog.

– Conversion scenarios: conversion in any scenario, conversion only in CAST
expressions, and conversion only during value assignment. In scenarios
that are not supported, data type conversion cannot be performed even if
the conversion path is defined.

● MySQL supports conversion between any two data types.

Due to the preceding differences, when MySQL-based applications are migrated to
GaussDB, an error may be reported because the SQL statement does not support
the conversion between different data types. In the scenario where conversion is
supported, different conversion rules result in different execution results of SQL
statements.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

You are advised to use the same data type in SQL statements for comparison or
value assignment to avoid unexpected results or performance loss caused by data
type conversion.

2. Differences in target data type selection rules:

In some scenarios, the data type to be compared or returned can be determined
only after the types of multiple expressions are considered. For example, in the
UNION operation, projection columns at the same position in different SELECT
statements are of different data types. The final data type of the query result
needs to be determined based on the data type of the projection columns in each
SELECT statement.

GaussDB and MySQL have different rules for determining the target data types.

● GaussDB rules:
– If the operand types of operators are inconsistent, the operand types are

not converted to the target type before calculation. Instead, operators of
two data types are directly registered, and two types of processing rules
are defined during operator processing. In this mode, implicit type
conversion does not exist, but the customized processing rule implies the
conversion operation.

– Rules for determining the target data type in the set operation and
expression scenarios:

▪ If all types are the same, it is the target type.

▪ If the two data types are different, check whether the data types are
of the same type, such as the numeric type, character type, and date
and time type. If they do not belong to the same type, the target
type cannot be determined. In this case, an error is reported during
SQL statement execution.

▪ For data types with the same category attribute (defined in the
pg_type system catalog), the data type with the preferred attribute
(defined in the pg_type system catalog) is selected as the target
type. If operand 1 can be converted to operand 2 (no conversion
path), but operand 2 cannot be converted to operand 1 or the
priority of the numeric type is lower than that of operand 2, then
operand 2 is selected as the target type.

▪ If three or more data types are involved, the rule for determining the
target type is as follows: common_type(type1,type2,type3) =
common_type(common_type(type1,type2),type3). Perform iterative
processing in sequence to obtain the final result.

▪ For IN and NOT IN expressions, if the target type cannot be
determined based on the preceding rules, each expression in lexpr
and expr_list is compared one by one based on the equivalent
operator (=).

▪ Precision determination: The precision of the finally selected
expression is used as the final result.

● MySQL rules:

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

– If the operand types of operators are inconsistent, determine the target
type based on the following rules. Then, convert the inconsistent operand
types to the target type and then process the operands.

▪ If both parameters are of the string type, they are compared based
on the string type.

▪ If both parameters are of the integer type, they are compared based
on the integer type.

▪ If a hexadecimal value is not compared with a numeric value, they
are compared based on the binary string.

▪ If one parameter is of the datetime/timestamp type, and the other
parameter is a constant, the constant is converted to the timestamp
type for comparison.

▪ If one parameter is of the decimal type, the data type used for
comparison depends on the other parameter. If the other type is
decimal or integer, the decimal type is used. If the other type is not
decimal, the real type is used.

▪ In other scenarios, the data type is converted to the real type for
comparison.

– Rules for determining the target data type in the set operation and
expression scenarios:

▪ Establish a target type matrix between any two types. Given two
types, the target type can be determined by using the matrix.

▪ If three or more data types are involved, the rule for determining the
target type is as follows: common_type(type1,type2,type3) =
common_type(common_type(type1,type2),type3). Perform iterative
processing in sequence to obtain the final result.

▪ If the target type is integer and each expression type contains signed
and unsigned integers, the type is promoted to an integer type with
higher precision. The result is unsigned only when all expressions are
unsigned. Otherwise, the result is signed.

▪ The highest precision in the expression is used as the final result.

According to the preceding rules, GaussDB and MySQL differ greatly in data type
conversion rules and types cannot be directly compared. In the preceding scenario,
the execution result of SQL statements may be different from that in MySQL. In
the current version, you are advised to use the same type for all expressions or use
CAST to convert the type to the required type in advance to avoid differences.

2.3 System Functions
GaussDB is compatible with most MySQL system functions, but there are some
differences. If not listed, the function behavior is the native GaussDB behavior by
default.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

NO TE

For most GaussDB system functions compatible with MySQL, the return value precision (the
number of trailing zeros in the result) is inconsistent with that of MySQL. This is because
the precision of some data types is lost in some scenarios and the precision cannot be
correctly obtained. As a result, some functions are not fully adapted.

2.3.1 Flow Control Functions

Table 2-10 Flow control functions

N
o.

MySQL GaussD
B

Difference

1 IF() Support
ed

● The expr1 input parameter supports only the
Boolean type. If an input parameter of the non-
Boolean type cannot be converted to the Boolean
type, an error is reported.

● If the types of expr2 and expr3 are different and
no implicit conversion function exists between the
two types, an error is reported.

● If the two input parameters are of the same type,
the input parameter type is returned.

● If the expr2 and expr3 input parameters are of
the NUMERIC, STRING, or TIME type respectively,
the output is of the TEXT type. In MySQL, the
output is of the VARCHAR type.

2 IFNULL() Support
ed

● If the types of expr1 and expr2 are different and
no implicit conversion function exists between the
two types, an error is reported.

● If the two input parameters are of the same type,
the input parameter type is returned.

● If the expr1 and expr2 input parameters are of
the NUMERIC, STRING, or TIME type respectively,
the output is of the TEXT type. In MySQL, the
output is of the VARCHAR type.

● If the first input parameter is FLOAT4 and the
other input parameter is BIGINT or UNSIGNED
BIGINT, the DOUBLE type is returned. In MySQL,
the FLOAT type is returned.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

N
o.

MySQL GaussD
B

Difference

3 NULLIF() Support
ed

● The NULLIF() type derivation in GaussDB complies
with the following logic:
1. If the data types of two parameters are

different and the two input parameter types
have an equality comparison operator, the left
value type corresponding to the equality
comparison operator is returned. Otherwise,
the two input parameter types are forcibly
compatible.

2. If an equality comparison operator exists after
forcible type compatibility, the left value type
of the equality comparison operator after
forcible type compatibility is returned.

3. If the corresponding equality operator cannot
be found after forcible type compatibility, an
error is reported.
-- The two input parameter types have an equality
comparison operator.
gaussdb=# select pg_typeof(nullif(1::int2, 2::int8));
 pg_typeof

 smallint
(1 row)
-- The two input parameter types do not have the equality
comparison operator, but the equality comparison operator
can be found after forcible type compatibility.
gaussdb=# select pg_typeof(nullif(1::int1, 2::int2));
 pg_typeof

 bigint
(1 row)

-- The two input parameter types do not have the equality
comparison operator, and the equality comparison operator
does not exist after forcible type compatibility.
gaussdb=# SELECT nullif(1::bit, '1'::MONEY);
ERROR: operator does not exist: bit = money
LINE 1: SELECT nullif(1::bit, '1'::MONEY);
 ^
HINT: No operator matches the given name and argument
type(s). You might need to add explicit type casts.
CONTEXT: referenced column: nullif

● The MySQL output type is related only to the type
of the first input parameter.
1. If the type of the first input parameter is

TINYINT, SMALLINT, MEDIUMINT, INT, or
BOOL, the output is of the INT type.

2. If the type of the first input parameter is
BIGINT, the output is of the BIGINT type.

3. When the type of the first input parameter is
UNSIGNED TINYINT, UNSIGNED SMALLINT,
UNSIGNED MEDIUMINT, UNSIGNED INT, or
BIT, the output is of the UNSIGNED INT type.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

N
o.

MySQL GaussD
B

Difference

4. If the type of the first input parameter is
UNSIGNED BIGINT, the output is of the
UNSIGNED BIGINT type.

5. If the type of the first input parameter is
FLOAT, DOUBLE, or REAL, the output is of the
DOUBLE type.

6. If the type of the first input parameter
DECIMAL or NUMERIC, the output is of the
DECIMAL type.

7. If the type of the first input parameter is DATE,
TIME, DATE, DATETIME, TIMESTAMP, CHAR,
VARCHAR, TINYTEXT, ENUM, or SET, the output
is of the VARCHAR type.

8. If the type of the first input parameter is TEXT,
MEDIUMTEXT, or LONGTEXT, the output is of
the LONGTEXT type.

9. If the type of the first input parameter is
TINYBLOB, the output is of the VARBINARY
type.

10.If the type of the first input parameter is
MEDIUMBLOB or LONGBLOB, the output is of
the LONGBLOB type.

11.If the type of the first input parameter is BLOB,
the output is of the BLOB type.

4 ISNULL() Support
ed

In GaussDB, the return value is t or f of the
BOOLEAN type. In MySQL, the return value is 1 or 0
of the INT type.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

2.3.2 Date and Time Functions
NO TE

The following describes the date and time function compatibility between GaussDB and
MySQL:
● In Developer Guide, if an input parameter of a function is a time expression:

Time expressions (mainly including TEXT, DATETIME, DATE, and TIME) and types that
can be implicitly converted to time expressions can be used as input parameters. For
example, a number can be implicitly converted to text and then used as a time
expression.
However, the effective mode varies according to the function. For example, DATEDIFF is
used to calculate only the date difference. Therefore, the time expression is parsed as
date. TIMESTAMPDIFF is used to calculate the time difference based on UNIT. Therefore,
the time expression is parsed as DATE, TIME, or DATETIME based on UNIT.

● If an input parameter of a function is an invalid date:
Generally, the supported DATE and DATETIME ranges are the same as those in MySQL.
The value of DATE ranges from '0000-01-01' to '9999-12-31', and the value of
DATETIME ranges from '0000-01-01 00:00:00' to '9999-12-31 23:59:59'. Although the
DATE and DATETIME ranges supported by GaussDB are greater than those supported by
MySQL, out-of-bounds dates are still invalid.

Most time functions generate alarms and return NULL. Only dates that can be normally
converted by CAST are normal and reasonable dates.
● Separators for input parameters of functions:

For a time function, all non-digit characters are regarded as separators when input
parameters are processed. The standard format is recommended: Use hyphens (-) to
separate year, month, and day, use colons (:) to separate hour, minute, and second, and
use a period (.) before milliseconds.
Error-prone scenario: "SELECT timestampdiff(hour, '2020-03-01 00:00:00', '2020-02-28
00:00:00+08');" In B-compatible databases, the time zone in a time function is not
automatically calculated. Therefore, +08 is not identified as the time zone. Instead, + is
used as a separator and is calculated as seconds.

Most function scenarios of GaussDB date and time functions are the same as
those of MySQL, but there are still differences. Some differences are as follows:

● If an input parameter of a function is NULL, the function returns NULL, and
no warning or error is reported. These functions include:
from_days, date_format, str_to_date, datediff, timestampdiff, date_add,
subtime, month, time_to_sec, to_days, to_seconds, dayname, monthname,
convert_tz, sec_to_time, addtime, adddate, date_sub, timediff, last_day,
weekday, from_unixtime, unix_timestamp, subdate, day, year, weekofyear,
dayofmonth, dayofyear, week, yearweek, dayofweek, time_format, hour,
minute, second, microsecond, quarter, get_format, extract, makedate,
period_add, timestampadd, period_diff, utc_time, utc_timestamp, maketime,
and curtime.
Example:
gaussdb=# select day(null);
 day

(1 row)

● Some functions with pure numeric input parameters are different from those
of MySQL. Numeric input parameters without quotation marks are converted
into text input parameters for processing.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

Example:
gaussdb=# select day(19231221.123141);
WARNING: Incorrect datetime value: "19231221.123141"
CONTEXT: referenced column: day
 day

(1 row)

● Time and date calculation functions are adddate, subdate, date_add, and
date_sub. If the calculation result is a date, the supported range is
[0000-01-01,9999-12-31]. If the calculation result is a date and time, the
supported range is [0000-01-01 00:00:00.000000,9999-12-31
23:59:59.999999]. If the calculation result exceeds the supported range, an
ERROR is reported in strict mode, or a WARNING is reported in loose mode. If
the date result after calculation is within the range [0000-01-01,0001-01-01],
GaussDB returns the result normally. MySQL returns '0000-00-00'.
Example:
gaussdb=# select subdate('0000-01-01', interval 1 hour);
ERROR: Datetime function: datetime field overflow
CONTEXT: referenced column: subdate

gaussdb=# select subdate('0001-01-01', interval 1 day);
 subdate

 0000-12-31

(1 row)

● If the input parameter of the date or datetime type of the date and time
function contains month 0 or day 0, the value is invalid. In strict mode, an
error is reported. In loose mode, if the input is a character string or number, a
warning is reported. If the input is of the date or datetime type, the system
processes the input as December of the previous year or the last day of the
previous month.
If the type of the CAST function is converted to date or datetime, an error is
reported in strict mode. In loose mode, no warning is reported. Instead, the
system processes the input as December of the previous year or the last day
of the previous month. Pay attention to this difference. MySQL outputs the
value as it is, even if the year, month, and day are set to 0.
Example:
gaussdb=# select adddate('2023-01-00', 1);-- Strict mode
ERROR: Incorrect datetime value: "2023-01-00"
CONTEXT: referenced column: adddate

gaussdb=# select adddate('2023-01-00', 1);-- Loose mode
WARNING: Incorrect datetime value: "2023-01-00"
CONTEXT: referenced column: adddate
 adddate

(1 row)

gaussdb=# select adddate(date'2023-00-00', 1);-- Loose mode
 adddate

 2022-12-01
(1 row)

gaussdb=# select cast('2023/00/00' as date);-- Loose mode
 date

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

 2022-11-30
(1 row)

gaussdb=# select cast('0000-00-00' as datetime);-- Loose mode
 timestamp

 0000-00-00 00:00:00
(1 row)

● If the input parameter of the function is of the numeric data type, no error is
reported in the case of invalid input, and the input parameter is processed as
0.
Example:
gaussdb=# select from_unixtime('aa');
 from_unixtime

 1970-01-01 08:00:00
(1 row)

● A maximum of six decimal places are allowed. Decimal places with all 0s are
not allowed.
Example:
gaussdb=# select from_unixtime('1234567899.00000');
 from_unixtime

 2009-02-14 07:31:39
(1 row)

● If the time function parameter is a character string, the result is correct only
when the year, month, and day are separated by a hyphen (-) and the hour,
minute, and second are separated by a colon (:).
Example:
gaussdb=# select adddate('20-12-12',interval 1 day);
 adddate

 2020-12-13
(1 row)

● If the return value of a function is of the varchar type in MySQL, the return
value of the function is of the text type in GaussDB.
-- Return value of a function in GaussDB.
gaussdb=# SELECT pg_typeof(adddate('2023-01-01', 1));
 pg_typeof

 text
(1 row)

-- Return value of a function in MySQL.
mysql> CREATE VIEW v1 AS SELECT adddate('2023-01-01', 1);
Query OK, 0 rows affected (0.00 sec)

mysql> DESC v1;
+--------------------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------------------------+-------------+------+-----+---------+-------+
| adddate('2023-01-01', 1) | varchar(29) | YES | | NULL | |
+--------------------------+-------------+------+-----+---------+-------+
1 row in set (0.00 sec)

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

Table 2-11 Date and time functions

N
o.

MySQL GaussDB Difference

1 ADDDATE() Supported The performance of this function is
different from that of MySQL due
to interval expression differences.
For details, see INTERVAL.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

N
o.

MySQL GaussDB Difference

2 ADDTIME() Supported ● MySQL returns NULL if the
second input parameter is a
string in the DATETIME format.
GaussDB can calculate the value.

● The value range of an input
parameter is ['0001-01-01
00:00:00', 9999-12-31
23:59:59.999999].

● If the first parameter of the
ADDTIME function in MySQL is a
dynamic parameter (for
example, in a prepared
statement), the return type is
TIME. Otherwise, the parse type
of the function is derived from
the parse type of the first
parameter. The return value
rules of the ADDTIME function
in GaussDB are as follows:
– The first input parameter is of

the date type, the second
input parameter is of the date
type, and the return value is
of the time type.

– The first input parameter is of
the date type, the second
input parameter is of the text
type, and the return value is
of the text type.

– The first input parameter is of
the date type, the second
input parameter is of the
datetime type, and the return
value is of the time type.

– The first input parameter is of
the date type, the second
input parameter is of the
time type, and the return
value is of the time type.

– The first input parameter is of
the text type, the second
input parameter is of the date
type, and the return value is
of the text type.

– The first input parameter is of
the text type, the second

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

N
o.

MySQL GaussDB Difference

input parameter is of the text
type, and the return value is
of the text type.

– The first input parameter is of
the text type, the second
input parameter is of the
datetime type, and the return
value is of the text type.

– The first input parameter is of
the text type, the second
input parameter is of the
time type, and the return
value is of the text type.

– The first input parameter is of
the datetime type, the second
input parameter is of the date
type, and the return value is
of the datetime type.

– The first input parameter is of
the datetime type, the second
input parameter is of the text
type, and the return value is
of the text type.

– The first input parameter is of
the datetime type, the second
input parameter is of the
datetime type, and the return
value is of the datetime type.

– The first input parameter is of
the datetime type, the second
input parameter is of the
time type, and the return
value is of the datetime type.

– The first input parameter is of
the time type, the second
input parameter is of the date
type, and the return value is
of the time type.

– The first input parameter is of
the time type, the second
input parameter is of the text
type, and the return value is
of the text type.

– The first input parameter is of
the time type, the second
input parameter is of the

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

N
o.

MySQL GaussDB Difference

datetime type, and the return
value is of the time type.

– The first input parameter is of
the time type, the second
input parameter is of the
time type, and the return
value is of the time type.

3 CONVERT_TZ() Supported -

4 CURDATE() Supported -

5 CURRENT_DATE(),
CURRENT_DATE

Supported -

6 CURRENT_TIME(),
CURRENT_TIME

Supported The time value (after the decimal
point) output by precision is
rounded off in GaussDB and
directly truncated in MySQL. The
trailing 0s of the time value (after
the decimal point) output by
precision are not displayed in
GaussDB but displayed in MySQL.
GaussDB supports only integer
values within the range of [0,6] as
the precision of the returned time.
For other values, an error is
reported. The valid precision value
in MySQL is within [0,6], but the
input integer value is divided by
256 to get a remainder. For
example, if the input integer value
is 257, the time value with
precision 1 is returned.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

N
o.

MySQL GaussDB Difference

7 CURRENT_TIMESTAM
P(),
CURRENT_TIMESTAMP

Supported The time value (after the decimal
point) output by precision is
rounded off in GaussDB and
directly truncated in MySQL. The
trailing 0s of the time value (after
the decimal point) output by
precision are not displayed in
GaussDB but displayed in MySQL.
GaussDB supports only the input
integer value within the range of
[0,6] as the precision of the
returned time. If the input integer
value is greater than 6, an alarm is
generated and the time value is
output based on the precision 6.
The valid precision value in MySQL
is within [0,6], but the input integer
value is divided by 256 to get a
remainder. For example, if the input
integer value is 257, the time value
with precision 1 is returned.

8 CURTIME() Supported In GaussDB, if a character string or
a non-integer value is entered, the
value is implicitly converted into an
integer and then the precision is
verified. If the value is beyond the
[0,6] range, an error is reported. If
the value is within the range, the
time value is output normally. In
MySQL, an error is reported. The
time value (after the decimal point)
output by precision is rounded off
in GaussDB and directly truncated
in MySQL. The trailing zeros of the
time value (after the decimal point)
output by precision is not displayed
in GaussDB but displayed in
MySQL. GaussDB supports only
integer values within the range of
[0,6] as the precision of the
returned time. For other values, an
error is reported. The valid precision
value in MySQL is within [0,6], but
the input integer value is divided by
256 to get a remainder. For
example, if the input integer value
is 257, the time value with
precision 1 is returned.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

N
o.

MySQL GaussDB Difference

9 YEARWEEK() Supported -

10 DATE_ADD() Supported The performance of this function is
different from that of MySQL due
to interval expression differences.
For details, see INTERVAL.

11 DATE_FORMAT() Supported -

12 DATE_SUB() Supported The performance of this function is
different from that of MySQL due
to interval expression differences.
For details, see INTERVAL.

13 DATEDIFF() Supported -

14 DAY() Supported -

15 DAYNAME() Supported -

16 DAYOFMONTH() Supported -

17 DAYOFWEEK() Supported -

18 DAYOFYEAR() Supported -

19 EXTRACT() Supported -

20 FROM_DAYS() Supported -

21 FROM_UNIXTIME() Supported -

22 GET_FORMAT() Supported -

23 HOUR() Supported -

24 LAST_DAY Supported -

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

N
o.

MySQL GaussDB Difference

25 LOCALTIME(),
LOCALTIME

Supported The time value (after the decimal
point) output by precision is
rounded off in GaussDB and
directly truncated in MySQL. The
trailing 0s of the time value (after
the decimal point) output by
precision are not displayed in
GaussDB but displayed in MySQL.
GaussDB supports only integer
values within the range of [0,6] as
the precision of the returned time.
For other integer values, an error is
reported. The valid precision value
in MySQL is within [0,6], but the
input integer value is divided by
256 to get a remainder. For
example, if the input integer value
is 257, the time value with
precision 1 is returned.

26 LOCALTIMESTAMP,
LOCALTIMESTAMP()

Supported The time value (after the decimal
point) output by precision is
rounded off in GaussDB and
directly truncated in MySQL. The
trailing 0s of the time value (after
the decimal point) output by
precision are not displayed in
GaussDB but displayed in MySQL.
GaussDB supports only the input
integer value within the range of
[0,6] as the precision of the
returned time. If the input integer
value is greater than 6, an alarm is
generated and the time value is
output based on the precision 6.
The valid precision value in MySQL
is within [0,6], but the input integer
value is divided by 256 to get a
remainder. For example, if the input
integer value is 257, the time value
with precision 1 is returned.

27 MAKEDATE() Supported -

28 MAKETIME() Supported When the input parameter is NULL,
GaussDB does not support self-
nesting of the maketime function,
but MySQL supports.

29 MICROSECOND() Supported -

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

N
o.

MySQL GaussDB Difference

30 MINUTE() Supported -

31 MONTH() Supported -

32 MONTHNAME() Supported -

33 NOW() Supported The time value (after the decimal
point) output by precision is
rounded off in GaussDB and
directly truncated in MySQL. The
trailing 0s of the time value (after
the decimal point) output by
precision are not displayed in
GaussDB but displayed in MySQL.
GaussDB supports only the input
integer value within the range of
[0,6] as the precision of the
returned time. If the input integer
value is greater than 6, an alarm is
generated and the time value is
output based on the precision 6.
The valid precision value in MySQL
is within [0,6], but the input integer
value is divided by 256 to get a
remainder. For example, if the input
integer value is 257, the time value
with precision 1 is returned.

34 PERIOD_ADD() Supported If the input parameter period or
result is less than 0, GaussDB
reports an error by referring to the
performance in MySQL 8.0.x.
Integer wrapping occurs in MySQL
5.7. As a result, the calculation
result is abnormal.

35 PERIOD_DIFF() Supported If the input parameter or result is
less than 0, GaussDB reports an
error by referring to the
performance in MySQL 8.0.x.
Integer wrapping occurs in MySQL
5.7. As a result, the calculation
result is abnormal.

36 QUARTER() Supported -

37 SEC_TO_TIME() Supported -

38 SECOND() Supported -

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

N
o.

MySQL GaussDB Difference

39 STR_TO_DATE() Supported Return value difference: In
GaussDB, text is returned. In
MySQL, datetime or date is
returned.

40 SUBDATE() Supported The performance of this function is
different from that of MySQL due
to interval expression differences.
For details, see INTERVAL.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

N
o.

MySQL GaussDB Difference

41 SUBTIME() Supported ● MySQL returns NULL if the
second input parameter is a
string in the DATETIME format.
GaussDB can calculate the value.

● The value range of an input
parameter is ['0001-01-01
00:00:00', 9999-12-31
23:59:59.999999].

● If the first parameter of the
SUBTIME function in MySQL is a
dynamic parameter (for
example, in a prepared
statement), the return type is
TIME. Otherwise, the parse type
of the function is derived from
the parse type of the first
parameter. The return value
rules of the SUBTIME function in
GaussDB are as follows:
– The first input parameter is of

the date type, the second
input parameter is of the date
type, and the return value is
of the time type.

– The first input parameter is of
the date type, the second
input parameter is of the text
type, and the return value is
of the text type.

– The first input parameter is of
the date type, the second
input parameter is of the
datetime type, and the return
value is of the time type.

– The first input parameter is of
the date type, the second
input parameter is of the
time type, and the return
value is of the time type.

– The first input parameter is of
the text type, the second
input parameter is of the date
type, and the return value is
of the text type.

– The first input parameter is of
the text type, the second

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

N
o.

MySQL GaussDB Difference

input parameter is of the text
type, and the return value is
of the text type.

– The first input parameter is of
the text type, the second
input parameter is of the
datetime type, and the return
value is of the text type.

– The first input parameter is of
the text type, the second
input parameter is of the
time type, and the return
value is of the text type.

– The first input parameter is of
the datetime type, the second
input parameter is of the date
type, and the return value is
of the datetime type.

– The first input parameter is of
the datetime type, the second
input parameter is of the text
type, and the return value is
of the text type.

– The first input parameter is of
the datetime type, the second
input parameter is of the
datetime type, and the return
value is of the datetime type.

– The first input parameter is of
the datetime type, the second
input parameter is of the
time type, and the return
value is of the datetime type.

– The first input parameter is of
the time type, the second
input parameter is of the date
type, and the return value is
of the time type.

– The first input parameter is of
the time type, the second
input parameter is of the text
type, and the return value is
of the text type.

– The first input parameter is of
the time type, the second
input parameter is of the

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

N
o.

MySQL GaussDB Difference

datetime type, and the return
value is of the time type.

– The first input parameter is of
the time type, the second
input parameter is of the
time type, and the return
value is of the time type.

42 SYSDATE() Supported The integer value of the MySQL
input parameter is wrapped when
reaching the maximum value 255
in one byte. The integer in GaussDB
is not wrapped.

43 YEAR() Supported -

44 TIME_FORMAT() Supported -

45 TIME_TO_SEC() Supported -

46 TIMEDIFF() Supported -

47 WEEKOFYEAR() Supported -

48 TIMESTAMPADD() Supported -

49 TIMESTAMPDIFF() Supported -

50 TO_DAYS() Supported -

51 TO_SECONDS() Supported -

52 UNIX_TIMESTAMP() Supported Return value difference: In
GaussDB, numeric is returned. In
MySQL, int is returned.

53 UTC_DATE() Supported MySQL supports calling without
parentheses, but GaussDB does not.
The integer value of the MySQL
input parameter is wrapped when
reaching the maximum value 255
by one byte.
MySQL input parameters support
only integers ranging from 0 to 6.
GaussDB supports input parameters
that can be implicitly converted to
integers ranging from 0 to 6.

54 UTC_TIME() Supported

55 UTC_TIMESTAMP() Supported

56 WEEK() Supported -

57 WEEKDAY() Supported -

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

2.3.3 String Functions

Table 2-12 String functions

No. MySQL GaussDB Difference

1 BIN() Supported. In GaussDB, the types supported
by function input parameter 1
are as follows:
● Integer types: tinyint,

smallint, mediumint, int, and
bigint.

● Unsigned integer types:
tinyint unsigned, smallint
unsigned, int unsigned, and
bigint unsigned.

● Character and text types:
char, varchar, tinytext, text,
mediumtext, and longtext.
Only numeric integer strings
are supported, and the
integer range is within the
bigint range.

● Floating-point types: float,
real, and double.

● Fixed-point types: numeric,
decimal, and dec.

● Boolean type: bool.

2 CONCAT() Supported. The data type of the return
value of CONCAT is always text
regardless of the data type of
the parameter. However, in
MySQL, if CONCAT contains
binary parameters, the return
value is binary.

3 CONCAT_WS() Supported. The data type of the return
value of CONCAT_WS is always
text regardless of the data type
of the parameter. However, in
MySQL, if CONCAT_WS contains
binary parameters, the return
value is binary. In other cases,
the return value is a string.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

No. MySQL GaussDB Difference

4 ELT() Supported. 1. In GaussDB, the types
supported by function input
parameter 1 are as follows:
● Integer types: tinyint,

smallint, mediumint, int,
and bigint.

● Unsigned integer types:
tinyint unsigned, smallint
unsigned, and int
unsigned.

● Character and text types:
char, varchar, tinytext, text,
mediumtext, and longtext.
Only numeric integer
strings are supported, and
the integer range is within
the bigint range.

● Floating-point types: float,
real, and double.

● Fixed-point types: numeric,
decimal, and dec.

● Boolean type: bool.
2. In GaussDB, the types

supported by function input
parameter 2 are as follows:
● Integer types: tinyint,

smallint, mediumint, int,
and bigint.

● Unsigned integer types:
tinyint unsigned, smallint
unsigned, int unsigned,
and bigint unsigned.

● Character and text types:
char, varchar, tinytext, text,
mediumtext, and longtext.

● Floating-point types: float,
real, and double.

● Fixed-point types: numeric,
decimal, and dec.

● Boolean type: bool.
● Large object types:

tinyblob, blob,
mediumblob, and
longblob.

● Date types: datetime,
timestamp, date, and time.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

No. MySQL GaussDB Difference

5 FIELD() Supported. When function input parameters
range from the maximum bigint
value to the maximum bigint
unsigned value, incompatibility
occurs.
When function input parameters
are of float(m, d), double(m, d),
or real(m, d) type, the precision
is higher and incompatibility
occurs.

6 FIND_IN_SET() Supported. When the database encoding is
set to 'SQL_ASCII', the default
case sensitivity rule is not
supported. That is, if no
character set rule is specified,
uppercase and lowercase letters
are treated as distinct.

7 INSERT() Supported. ● The range of input
parameters of the Int64 type
is from –
9223372036854775808 to
+9223372036854775807. If a
value is out of range, an error
is reported. MySQL does not
limit the range of input
parameters of the numeric
type. If an exception occurs,
an alarm is generated,
indicating that the value is set
to the upper or lower limit.

● The maximum length of the
input parameter of the text
type is 2^30 – 5 bytes, and
the maximum length of the
input parameter of the bytea
type is 2^30 – 512 bytes.

● If any of the s1 and s2
parameters is of the bytea
type and the result contains
invalid characters, the
displayed result may be
different from that of MySQL,
but the character encoding is
the same as that of MySQL.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

No. MySQL GaussDB Difference

8 LOCATE() Supported. When input parameter 1 is of
the bytea type and input
parameter 2 is of the text type,
the behavior of GaussDB is
different from that of MySQL.

9 MAKE_SET() Supported. ● When the bits parameter is
an integer, the maximum
range is int128, which is
smaller than the MySQL
range.

● When the bits parameter is of
the date type (datetime,
timestamp, date, or time), it
is not supported because the
conversion from the date type
to the integer type is different
from that in MySQL.

● GaussDB and MySQL are
inherently different in the bit
and Boolean types, causing
different returned results.
When the bits input
parameter is of the Boolean
type, and the str input
parameter is of the bit or
Boolean type, they are not
supported.

● When the bits input
parameter is of the character
string or text type, only the
pure integer format is
supported. In addition, the
value range of pure integers
is limited to bigint.

● The integer value of the str
input parameter exceeds the
range from 81 negative nines
to 81 positive nines. The
return value is different from
that of MySQL.

● When the str input parameter
is expressed in scientific
notation, trailing zeros are
displayed in GaussDB but not
displayed in MySQL. This is an
inherent difference.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

No. MySQL GaussDB Difference

10 QUOTE() Supported. ● If the str character string
contains "\Z", "\r", "\%", or
"_", GaussDB does not
escape it, which is different
from MySQL. The slash
followed by digits may also
cause differences, for
example, "\563". This function
difference is the escape
character difference between
GaussDB and MySQL.

● The output format of "\b" in
the str character string is
different from that in MySQL.
This is an inherent difference
between GaussDB and
MySQL.

● If the str character string
contains "\0", GaussDB
cannot identify the character
because the UTF-8 character
set cannot identify the
character. As a result, the
input fails. This is an inherent
difference between GaussDB
and MySQL.

● If str is of the bit or Boolean
type, this type is not
supported because it is
different in GaussDB and
MySQL.

● GaussDB supports a
maximum of 1 GB data
transfer. The maximum length
of the str input parameter is
536870908, and the
maximum size of the result
string returned by the
function is 1 GB.

● The integer value of the str
input parameter exceeds the
range from 81 negative nines
to 81 positive nines. The
return value is different from
that of MySQL.

● When the str input parameter
is expressed in scientific
notation, trailing zeros are

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

No. MySQL GaussDB Difference

displayed in GaussDB but not
displayed in MySQL. This is an
inherent difference.

11 SPACE() Supported. The maximum value of GaussDB
input parameter 1 is
1073741818. If the value
exceeds 1073741818, an empty
string is returned. By default, the
maximum value of MySQL input
parameter 1 is 4194304. If the
value exceeds 4194304, an alarm
is generated.
In GaussDB, the types supported
by function input parameter 1
are as follows:
● Integer types: tinyint,

smallint, mediumint, int, and
bigint.

● Unsigned integer types:
tinyint unsigned, smallint
unsigned, and int unsigned.

● Character and text types:
char, varchar, tinytext, text,
mediumtext, and longtext.
Only numeric integer strings
are supported, and the
integer range is within the
bigint range.

● Floating-point types: float,
real, and double.

● Fixed-point types: numeric,
decimal, and dec.

● Boolean type: bool.

12 SUBSTR() Supported. -

13 SUBSTRING() Supported. -

14 SUBSTRING_IN
DEX()

Supported. -

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

No. MySQL GaussDB Difference

15 STRCMP() Supported. 1. Different from MySQL,
GaussDB supports the
following input parameter
types:
● Character types: CHAR,

VARCHAR, NVARCHAR2,
and TEXT.

● Binary type: BYTEA.
● Numeral types: TINYING

[UNSIGNED], SMALLINT
[UNSIGNED], INTEGER
[UNSIGNED], BIGINT
[UNSIGNED], FLOAT4,
FLOAT8, and NUMERIC.

● Date and time types:
DATE, TIME WITHOUT
TIME ZONE, DATETIME,
and TIMESTAMPTZ.

2. For the floating-point type in
the numeric type, the
precision may be different
from that in MySQL due to
different connection
parameter settings. Therefore,
this scenario is not
recommended, or the
NUMERIC type is used
instead.

16 SHA() /
SHA1()

Supported. -

17 SHA2() Supported. -

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

2.3.4 Forced Conversion Functions

Table 2-13 Forced conversion functions

No. MySQL GaussDB Difference

1 CAST() Supported The data type
conversion rules
and supported
conversion
types are
subject to the
conversion
scope and rules
supported by
GaussDB.

2 CONVERT() Supported The data type
conversion rules
and supported
conversion
types are
subject to the
conversion
scope and rules
supported by
GaussDB.

2.3.5 Encryption Functions

Table 2-14 Encryption functions

No. MySQL GaussDB Differe
nce

1 AES_DECRYPT() Supported. -

2 AES_ENCRYPT() Supported. -

2.3.6 Information Functions

Table 2-15 Information functions

No. MySQL GaussDB Differe
nce

1 LAST_INSERT_ID() Supported -

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

2.3.7 JSON Functions

NO TE

JSON function differences:

1. For JSON functions and other character input parameter functions, if the input contains
escape characters, you need to set the GUC parameter set
standard_conforming_strings to off, which is different from MySQL by default. In this
case, escape characters are compatible with MySQL. However, a warning alarm is
generated for non-standard character input. Escape characters \t and \u, and escape
digits are different from those in MySQL. If the GUC parameter is not set, the
JSON_UNQUOTE() function is still compatible with MySQL and no alarm is reported.

2. When processing an ultra-long number (the number contains more than 64 characters),
the JSON function of GaussDB parses the number as a DOUBLE and uses scientific
notation for counting. The input parameters of the non-JSON type are the same as
those of MySQL. However, when input parameters of the JSON type are used, the JSON
type is not completely compatible with MySQL. As a result, differences occur in this
scenario. MySQL displays complete numbers. (When the number length exceeds 82,
MySQL displays an incorrect result.) GaussDB still parses an ultra-long number into a
double-precision value. Long numbers are stored using floating-point numbers. During
calculation, precision loss occurs in both GaussDB and MySQL. Therefore, you are
advised to use character strings to store long numbers.
gaussdb=# select json_insert('[1, 4,
99]','$[6]',j
son_insert('[1,4]','$[5]',99
999999999999));
 json_insert

 [1, 4, 1e+74, [1, 4, 1e+74]]
(1 row)

Table 2-16 JSON functions

N
o.

MySQL GaussDB Difference

1 JSON_APPEND() Supported. -

2 JSON_ARRAY() Supported. -

3 JSON_ARRAY_APPEND() Supported. -

4 JSON_ARRAY_INSERT() Supported. -

5 JSON_CONTAINS() Supported. -

6 JSON_CONTAINS_PATH() Supported. -

7 JSON_DEPTH() Supported. -

8 JSON_EXTRACT() Supported. -

9 JSON_INSERT() Supported. -

10 JSON_KEYS() Supported. -

11 JSON_LENGTH() Supported. -

12 JSON_MERGE() Supported. -

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

N
o.

MySQL GaussDB Difference

13 JSON_OBJECT() Supported. -

14 JSON_QUOTE() Supported. -

15 JSON_REMOVE() Supported. -

16 JSON_REPLACE() Supported. -

17 JSON_SEARCH() Supported. Return value
difference: In
GaussDB, text
is returned. In
MySQL, JSON
is returned.

18 JSON_SET() Supported. -

19 JSON_TYPE() Supported. -

20 JSON_UNQUOTE() Supported. -

21 JSON_VALID() Supported. -

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

2.3.8 Aggregate Functions

Table 2-17 Aggregate functions

No. MySQL GaussDB Difference

1 GROUP_CONCAT() Supported. If the group_concat parameter
contains both the DISTINCT and
ORDER BY syntaxes, all
expressions following ORDER BY
must be in the DISTINCT
expression.
group_concat(... order by
Number) does not indicate the
sequence of the parameter. The
number is only a constant
expression, which is equivalent
to no sorting.
The data type of the return
value of group_concat is always
text regardless of the data type
of the parameter. For MySQL, if
group_concat contains binary
parameters, the return value is
binary. In other cases, the return
value is a character string. If the
return value length is greater
than 512 bytes, the data type is
a character large object or
binary large object.
The value of
group_concat_max_len ranges
from 0 to 1073741823. The
maximum value is smaller than
that of MySQL.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

No. MySQL GaussDB Difference

2 DEFAULT() Supported. ● The default value of a column
is an array. GaussDB returns
an array. MySQL does not
support the array type.

● GaussDB columns are hidden
columns (such as xmin and
cmin). The default function
returns a null value.

● GaussDB supports default
values of partitioned tables,
temporary tables, and multi-
table join query.

● GaussDB supports the query
of nodes whose column
names contain character
string values (indicating
names) and A_Star nodes
(indicating that asterisks [*]
appear), for example,
default(tt.t4.id) and
default(tt.t4.*). For invalid
query column names and
A_Star nodes, the error
information reported by
GaussDB is different from
that reported by MySQL.

● When the default value of a
column is created in GaussDB,
the range of the column type
is not verified. As a result, an
error may be reported when
the default function is used.

● If the default value of a
column is a function
expression, the default
function in GaussDB returns
the calculated value of the
default expression of the
column during table creation.
The default function in
MySQL returns NULL.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

2.3.9 Arithmetic Functions

Table 2-18 Arithmetic functions

No. MySQ
L

Gauss
DB

Difference

1 log2() Suppor
ted.

● The display of decimal places is different from that
in MySQL. Due to the restriction of the GaussDB
floating-point data type, the extra_float_digits
parameter is used to control the number of
decimal places to be displayed.

● Due to the internal processing difference of the
input precision, the calculation results of GaussDB
and MySQL are different.

● The following data types are supported: integer
types (bigint, int16, int, smallint, and tinyint);
unsigned integer types (bigint unsigned, integer
unsigned, smallint unsigned, and tinyint unsigned);
floating-point types (numeric and real); character
string types (character, character varying, clob,
text, and numeric, but only numeric integer strings
are supported); set type; NULL type.

2 log10(
)

Suppor
ted.

● The display of decimal places is different from that
in MySQL. Due to the restriction of the GaussDB
floating-point data type, the extra_float_digits
parameter is used to control the number of
decimal places to be displayed.

● Due to the internal processing difference of the
input precision, the calculation results of GaussDB
and MySQL are different.

● The following data types are supported: integer
types (bigint, int16, int, smallint, and tinyint);
unsigned integer types (bigint unsigned, integer
unsigned, smallint unsigned, and tinyint unsigned);
floating-point types (numeric and real); character
string types (character, character varying, clob,
text, and numeric, but only numeric integer strings
are supported); set type; NULL type.

2.3.10 Other Functions

Table 2-19 Other functions

No. MySQL GaussDB Difference

1 UUID() Supported -

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

No. MySQL GaussDB Difference

2 UUID_SHORT() Supported -

2.4 Operators
GaussDB is compatible with most MySQL operators, but there are some
differences. If not listed, the operator behavior is the native GaussDB behavior by
default.

Table 2-20 Operator

No. MySQL GaussDB Difference

1 NULL-safe equal
(<=>)

Supported. -

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

No. MySQL GaussDB Difference

2 [NOT] REGEXP Supported. ● When b_format_dev_version
is set to 's2', the pattern
string contains escape
characters such as '\\a', '\\d',
'\\e', '\\n', '\\Z', and '\\u', and
the source strings '\a', '\d',
'\e', '\n', '\Z', and '\u' are
matched, the behavior of
GaussDB is different from
that of MySQL 5.7. MySQL
5.7 has a bug, which has
been fixed in later MySQL
versions and is now
consistent with GaussDB.

● When b_format_dev_version
is set to 's2', GaussDB's '\b'
can match '\\b', but MySQL
cannot.

● GaussDB reports an error
when the input parameter of
the pattern string pat is
invalid and only the right
single parenthesis ')' exists.
MySQL has a bug, which has
been fixed in later versions.

● When de|abc matches de or
abc, if there is a null value
on the left or right of |,
MySQL reports an error. This
bug has been fixed in later
versions.

● The regular expression of the
blank character [\t] can
match the character class
[:blank:] in GaussDB, but
MySQL's [\t] cannot match
[:blank:]. MySQL has a bug,
which has been fixed in later
versions.

● GaussDB supports non-
greedy pattern matching.
That is, the number of
matching characters is as
small as possible. A question
mark (?) is added after some
special characters, for
example, ??, *?, +?, {n}?,
{n,}?, and {n,m}?. MySQL 5.7
does not support non-greedy

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

No. MySQL GaussDB Difference

pattern matching, and the
error message "Got error
'repetition-operator operand
invalid' from regexp" is
displayed. MySQL 8.0 already
supports this function.

● In the binary character set,
the text and BLOB types are
converted to the bytea type.
The REGEXP operator does
not support the bytea type.
Therefore, the two types
cannot be matched.

3 [NOT] RLIKE Supported. Same as [NOT] REGEXP.

2.5 Character Sets
GaussDB allows you to specify the following character sets for databases,
schemas, tables, or columns.

Table 2-21 Character sets

No. MySQL GaussDB

1 utf8mb4 Supported.

2 gbk Supported.

3 gb18030 Supported.

4 utf8 Supported.

5 binary Supported.

2.6 Collation Rules
GaussDB allows you to specify the following collation rules for databases,
schemas, tables, or columns.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

NO TE

Differences in collation rules:
● Currently, only the character string type and some binary types support the specified

collation rules. You can check whether the typcollation attribute of a type in the
pg_type system catalog is not 0 to determine whether the type supports the collation.
The collation can be specified for all types in MySQL. However, collation rules are
meaningless except those for character strings and binary types.

● The current collation rules (except binary) can be specified only when the corresponding
character set is the same as the database-level character set. In GaussDB, the character
set must be the same as the database character set, and multiple character sets cannot
be used together in a table.

● The default collation of the utf8mb4 character set is utf8mb4_general_ci, which is the
same as that in MySQL 5.7.

● In GaussDB, utf8 and utf8mb4 are the same character set.

Table 2-22 Collation rules

No. MySQL GaussDB

1 utf8mb4_general_ci Supported.

2 utf8mb4_unicode_ci Supported.

3 utf8mb4_bin Supported.

4 gbk_chinese_ci Supported.

5 gbk_bin Supported.

6 gb18030_chinese_ci Supported.

7 gb18030_bin Supported.

8 binary Supported.

9 utf8mb4_0900_ai_ci Supported.

10 utf8_general_ci Supported.

11 utf8_bin Supported.

2.7 Expressions
GaussDB is compatible with most MySQL expressions, but there are some
differences. If not listed, the expression behavior is the native GaussDB behavior
by default.

Table 2-23 Expressions

No. MySQL GaussDB

1 User-defined variable @var_name Partially supported

2 Global variable @@var_name Partially supported

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

2.8 SQL
GaussDB is compatible with most MySQL syntax, but there are some differences.
This chapter describes the MySQL syntax supported by GaussDB.

2.8.1 DDL
No. MySQL Function Syntax GaussDB

Implementation
Difference

1 Create primary
keys, UNIQUE
indexes, and
foreign keys during
table creation and
modification.

ALTER TABLE and
CREATE TABLE

● GaussDB does not
support the UNIQUE
INDEX|KEY
index_name syntax.
An error will be
reported when the
UNIQUE INDEX|KEY
index_name syntax is
used.

● When a constraint is
created as a global
secondary index and
USING BTREE is
specified in the SQL
statement, the
underlying index is
created as UB-tree.

● When the table joined
with the constraint is
Ustore and USING
BTREE is specified in
the SQL statement,
the underlying index
is created as UB-tree.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

No. MySQL Function Syntax GaussDB
Implementation
Difference

2 Support auto-
increment
columns.

ALTER TABLE and
CREATE TABLE

● It is recommended
that the auto-
increment column be
the first column of a
non-global secondary
index. Otherwise, an
alarm is generated
when a table is
created, and errors
may occur when some
operations are
performed on a table
that contains auto-
increment columns,
for example, ALTER
TABLE EXCHANGE
PARTITION. The auto-
increment column in
MySQL must be the
first column of the
index.

● In the syntax
AUTO_INCREMENT =
value, value must be
a positive number less
than 2^127. MySQL
does not verify the
value.

● An error occurs if the
auto-increment
continues after an
auto-increment value
reaches the maximum
value of a column
data type. In MySQL,
errors or warnings
may be generated
during auto-
increment, and
sometimes auto-
increment continues
until the maximum
value is reached.

● GaussDB does not
support the
innodb_autoinc_lock_
mode system variable,

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

No. MySQL Function Syntax GaussDB
Implementation
Difference

but when its GUC
parameter
auto_increment_cach
e is set to 0, the
behavior of inserting
auto-increment
columns in batches is
similar to that when
the MySQL system
variable
innodb_autoinc_lock_
mode is set to 1.

● When 0s, NULLs, and
definite values are
imported or batch
inserted into auto-
increment columns,
the auto-increment
values inserted after
an error occurs in
GaussDB may not be
the same as those in
MySQL.
– The

auto_increment_c
ache parameter is
provided to control
the number of
reserved auto-
increment values.

● When auto-increment
is triggered by parallel
import or insertion of
auto-increment
columns, the cache
value reserved for
each parallel thread is
used only in the
thread. If the cache
value is not used up,
the values of auto-
increment columns in
the table are
discontinuous. The
auto-increment value
generated by parallel
insertion cannot be

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

No. MySQL Function Syntax GaussDB
Implementation
Difference

guaranteed to be the
same as that
generated in MySQL.

● When auto-increment
columns are batch
inserted into a local
temporary table, no
auto-increment value
is reserved. In normal
scenarios, auto-
increment values are
not discontinuous. In
MySQL, the auto-
increment result of an
auto-increment
column in a
temporary table is the
same as that in an
ordinary table.

● The SERIAL data type
of GaussDB is an
original auto-
increment column,
which is different
from the
AUTO_INCREMENT
column. The SERIAL
data type of MySQL is
the
AUTO_INCREMENT
column.

● The value of
auto_increment_offs
et cannot be greater
than that of
auto_increment_incr
ement. Otherwise, an
error occurs. MySQL
allows it and states
that
auto_increment_offs
et will be ignored.

● If a table has a
primary key or index,
the sequence in which
the ALTER TABLE
command rewrites

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

No. MySQL Function Syntax GaussDB
Implementation
Difference

table data may be
different from that in
MySQL. GaussDB
rewrites table data
based on the table
data storage
sequence, while
MySQL rewrites table
data based on the
primary key or index
sequence. As a result,
the auto-increment
sequence may be
different.

● When the ALTER
TABLE command is
used to add or modify
auto-increment
columns, the number
of auto-increment
values reserved for
the first time is the
number of rows in the
table statistics. The
number of rows in the
statistics may not be
the same as that in
MySQL.

● The return value of
the last_insert_id
function is a 128-bit
integer.

● When auto-increment
is performed in a
trigger or user-defined
function, the return
value of last_insert_id
is updated. MySQL
does not update it.

● If the values of the
GUC parameters
auto_increment_offs
et and
auto_increment_incr
ement are out of
range, an error occurs.
MySQL automatically

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

No. MySQL Function Syntax GaussDB
Implementation
Difference

changes the value to
a boundary value.

● If sql_mode is set to
no_auto_value_on_ze
ro, the auto-
increment columns of
the table are not
subject to NOT NULL
constraints. In
GaussDB and MySQL,
when the value of an
auto-increment
column is not
specified, NULL will
be inserted into the
auto-increment
column, but auto-
increment is triggered
for the former and
not triggered for the
latter.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

No. MySQL Function Syntax GaussDB
Implementation
Difference

3 Support prefix
indexes.

CREATE INDEX, ALTER
TABLE, and CREATE
TABLE

● The prefix length
cannot exceed 2676.
The actual length of
the key value is
restricted by the
internal page. If a
column contains
multi-byte characters
or an index has
multiple keys, an error
may be reported
when the index line
length exceeds the
threshold.

● In the CREATE INDEX
syntax, the following
keywords cannot be
used as prefix keys for
column names:
COALESCE, EXTRACT,
GREATEST, LEAST,
LNNVL, NULLIF, NVL,
NVL2, OVERLAY,
POSITION,
REGEXP_LIKE,
SUBSTRING,
TIMESTAMPDIFF,
TREAT, TRIM,
XMLCONCAT,
XMLELEMENT,
XMLEXISTS,
XMLFOREST,
XMLPARSE, XMLPI,
XMLROOT, and
XMLSERIALIZE.

● Prefix keys are not
supported in primary
key indexes.

4 Specify character
sets and collation
rules.

ALTER SCHEMA,
ALTER TABLE, CREATE
SCHEMA, and CREATE
TABLE

-

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

No. MySQL Function Syntax GaussDB
Implementation
Difference

5 Add columns
before the first
column of a table
or after a specified
column during
table modification.

ALTER TABLE -

6 Compatible with
the column name
modification and
the definition
syntax.

ALTER TABLE -

7 Compatible with
the EVENT syntax
of a scheduled
task.

ALTER EVENT, CREATE
EVENT, DROP EVENT,
and SHOW EVENTS

-

8 Create a
partitioned table.

CREATE TABLE
PARTITION and
CREATE TABLE
SUBPARTITION

-

9 Specify table-level
and column-level
comments during
table creation and
modification.

CREATE TABLE and
ALTER TABLE

-

10 Specify index-level
comments during
index creation.

CREATE INDEX -

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

No. MySQL Function Syntax GaussDB
Implementation
Difference

11 Exchange the
partition data of
an ordinary table
and a partitioned
table.

ALTER TABLE
PARTITION

Differences in ALTER
TABLE EXCHANGE
PARTITION:
● For auto-increment

columns, after the
ALTER EXCHANGE
PARTITION is
executed in MySQL,
the auto-increment
columns are reset. In
GaussDB, the auto-
increment columns
are not reset, and the
auto-increment
columns increase
based on the old
auto-increment value.

● If MySQL tables or
partitions use
tablespaces, data in
partitions and
ordinary tables cannot
be exchanged. If
GaussDB tables or
partitions use
different tablespaces,
data in partitions and
ordinary tables can
still be exchanged.

● MySQL does not
verify the default
values of columns.
Therefore, data in
partitions and
ordinary tables can be
exchanged even if the
default values are
different. GaussDB
verifies the default
values. If the default
values are different,
data in partitions and
ordinary tables cannot
be exchanged.

● After the DROP
COLUMN operation is
performed on a

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

No. MySQL Function Syntax GaussDB
Implementation
Difference

partitioned table or
an ordinary table in
MySQL, if the table
structure is still
consistent, data can
be exchanged
between partitions
and ordinary tables. In
GaussDB, data can be
exchanged between
partitions and
ordinary tables only
when the deleted
columns of ordinary
tables and partitioned
tables are strictly
aligned.

● MySQL and GaussDB
use different hash
algorithms. Therefore,
data stored in the
same hash partition
may be inconsistent.
As a result, the
exchanged data may
also be inconsistent.

● MySQL partitioned
tables do not support
foreign keys. If an
ordinary table
contains foreign keys
or other tables
reference foreign keys
of an ordinary table,
data in partitions and
ordinary tables cannot
be exchanged.
GaussDB partitioned
tables support foreign
keys. If the foreign
key constraints of two
tables are the same,
data in partitions and
ordinary tables can be
exchanged. If a
GaussDB partitioned
table does not contain

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

No. MySQL Function Syntax GaussDB
Implementation
Difference

foreign keys, an
ordinary table is
referenced by other
tables, and the
partitioned table is
the same as the
ordinary table, data in
the partitioned table
can be exchanged
with that in the
ordinary table.

12 Delete the primary
key and foreign
key constraints of
a table.

ALTER TABLE DROP
[PRIMARY |
FOREIGN]KEY

-

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

No. MySQL Function Syntax GaussDB
Implementation
Difference

13 Support the
CREATE TABLE...
LIKE syntax.

CREATE TABLE ... LIKE ● In versions earlier
than MySQL 8.0.16,
CHECK constraints are
parsed but their
functions are ignored.
In this case, CHECK
constraints are not
replicated. GaussDB
supports replication of
CHECK constraints.

● When a table is
created, all primary
key constraint names
in MySQL are fixed to
PRIMARY KEY.
GaussDB does not
support replication of
primary key constraint
names.

● When a table is
created, MySQL
supports replication of
unique key constraint
names, but GaussDB
does not.

● When a table is
created, MySQL
versions earlier than
8.0.16 do not have
CHECK constraint
information, but
GaussDB supports
replication of CHECK
constraint names.

● When a table is
created, MySQL
supports replication of
index names, but
GaussDB does not.

● When a table is
created across
sql_mode, MySQL is
controlled by the
loose mode and strict
mode. The strict mode
may become invalid in
GaussDB.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

No. MySQL Function Syntax GaussDB
Implementation
Difference

For example, if the
source table has the
default value
"0000-00-00",
GaussDB can create a
table that contains
the default value
"0000-00-00" in
"no_zero_date" strict
mode, which means
that the strict mode is
invalid. MySQL fails to
create the table
because it is
controlled by the strict
mode.

● MySQL supports
cross-database table
creation, but GaussDB
does not.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

No. MySQL Function Syntax GaussDB
Implementation
Difference

14 Compatible with
syntax for
changing table
names.

ALTER TABLE
tbl_name RENAME
[TO | AS | =]
new_tbl_name;
RENAME {TABLE |
TABLES} tbl_name TO
new_tbl_name [,
tbl_name2 TO
new_tbl_name2, ...];

● The ALTER RENAME
syntax in GaussDB
supports only the
function of changing
the table name and
cannot be coupled
with other function
operations.

● In GaussDB, only the
old table name
column supports the
usage of
schema.table_name,
and the new and old
table names belong to
the same schema.

● GaussDB does not
support renaming of
old and new tables
across schemas.
However, if you have
the permission, you
can modify the names
of tables in other
schemas in the
current schema.

● The syntax for
renaming multiple
groups of tables in
GaussDB supports
renaming of all local
temporary tables, but
does not support the
combination of local
temporary tables and
non-local temporary
tables.

● The RENAME TABLE
verification sequence
in GaussDB is
different from that in
MySQL. As a result,
the error information
is inconsistent.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

No. MySQL Function Syntax GaussDB
Implementation
Difference

15 Create a partition. ALTER TABLE [IF
EXISTS] { table_name
[*] | ONLY table_name
| ONLY
(table_name)}
action [, ...];

action:
move_clause |
exchange_clause |
row_clause |
merge_clause |
modify_clause |
split_clause |
add_clause |
drop_clause |
ilm_clause
add_clause:
ADD
{{partition_less_than_i
tem |
partition_start_end_ite
m | partition_list_item}
|
PARTITION({partition_
less_than_item |
partition_start_end_ite
m |
partition_list_item})}

● The following syntax
cannot be used to add
multiple partitions:
ALTER TABLE table_name
ADD PARTITION
(partition_definition1,
partition_definition1,...);

● Only the original
syntax for adding
multiple partitions is
supported.
ALTER TABLE table_name
ADD PARTITION
(partition_definition1), ADD
PARTITION
(partition_definition2[y1]), ..
.;

2.8.2 DML
No. MySQL Function Syntax

Descriptio
n

GaussDB Implementation
Difference

1 DELETE supports
deleting data from
multiple tables.

DELETE -

2 DELETE supports
ORDER BY and LIMIT.

DELETE -

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

No. MySQL Function Syntax
Descriptio
n

GaussDB Implementation
Difference

3 DELETE supports
deleting data from a
specified partition (or
subpartition).

DELETE -

4 UPDATE supports
updating data from
multiple tables.

UPDATE -

5 UPDATE supports
ORDER BY and LIMIT.

UPDATE -

6 Support the SELECT
INTO syntax.

SELECT ● In GaussDB, you can use
SELECT INTO to create a table
based on the query result.
MySQL does not support this
function.

● In GaussDB, the SELECT INTO
syntax does not support the
query result that is obtained
after the set operation of
multiple queries is performed.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

No. MySQL Function Syntax
Descriptio
n

GaussDB Implementation
Difference

7 Support the REPLACE
INTO syntax.

REPLACE ● Difference between the initial
values of the time type. For
example:
– MySQL is not affected by

the strict or loose mode.
You can insert time 0 into
a table.
mysql> CREATE TABLE test(f1
TIMESTAMP NOT NULL, f2
DATETIME NOT NULL, f3 DATE
NOT NULL);
Query OK, 1 row affected (0.00 sec)

mysql> REPLACE INTO test
VALUES(f1, f2, f3);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM test;
+---------------------
+---------------------+------------+
| f1 | f2 |
f3 |
+---------------------
+---------------------+------------+
| 0000-00-00 00:00:00 | 0000-00-00
00:00:00 | 0000-00-00 |
+---------------------
+---------------------+------------+
1 row in set (0.00 sec)

– The time 0 can be
successfully inserted only
when GaussDB is in loose
mode.
gaussdb=# SET b_format_version =
'5.7';
SET
gaussdb=# SET
b_format_dev_version = 's1';
SET
gaussdb=# SET sql_mode = '';
SET
gaussdb=# CREATE TABLE test(f1
TIMESTAMP NOT NULL, f2
DATETIME NOT NULL, f3 DATE
NOT NULL);
CREATE TABLE
gaussdb=# REPLACE INTO test
VALUES(f1, f2, f3);
REPLACE 0 1
gaussdb=# SELECT * FROM test;
f1 | f2 | f3

+---------------------+------------
0000-00-00 00:00:00 | 0000-00-00
00:00:00 | 0000-00-00
(1 row)
In strict mode, the error is
reported: date/time field

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

No. MySQL Function Syntax
Descriptio
n

GaussDB Implementation
Difference

value out of range:
"0000-00-00 00:00:00".

● Difference between the initial
values of the bit string type.
For example:
– The initial value of the BIT

type is an empty string '' in
MySQL, that is:
mysql> CREATE TABLE test(f1
BIT(3) NOT NULL);
Query OK, 0 rows affected (0.01
sec)

mysql> REPLACE INTO test
VALUES(f1);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT f1, f1 IS NULL
FROM test;
+----+------------+
| f1 | f1 is null |
+----+------------+
| | 0 |
| | 0 |
+----+------------+
2 rows in set (0.00 sec)

– If the initial value of the
BIT type is NULL in
GaussDB, an error is
reported.
gaussdb=# CREATE TABLE test(f1
BIT(3) NOT NULL);
CREATE TABLE
gaussdb=# REPLACE INTO test
VALUES(f1);
ERROR: null value in column "f1"
violates not-null constraint
DETAIL: Failing row contains (null).

8 SELECT supports multi-
partition query.

SELECT -

9 UPDATE supports
multi-partition update.

UPDATE -

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

No. MySQL Function Syntax
Descriptio
n

GaussDB Implementation
Difference

10 Import data by using
LOAD DATA.

LOAD
DATA

● The execution result of the
LOAD DATA syntax is the
same as that in MySQL strict
mode. The loose mode is not
adapted currently.

● The IGNORE and LOCAL
parameters are used only to
ignore the conflicting rows
when the imported data
conflicts with the data in the
table and to automatically fill
default values for other
columns when the number of
columns in the file is less than
that in the table. Other
functions are not supported
currently.

● If the keyword LOCAL is
specified and the file path is a
relative path, the file is
searched from the binary
directory. If the keyword
LOCAL is not specified and
the file path is a relative path,
the file is searched from the
data directory.

● If single quotation marks are
specified as separators, escape
characters, and newline
characters in the syntax,
lexical parsing errors occur.

● The [(col_name_or_user_var
[, col_name_or_user_var]...)]
parameter cannot be used to
specify a column repeatedly.

● The newline character
specified by [FIELDS
TERMINATED BY 'string']
cannot be the same as the
separator specified by [LINES
TERMINATED BY'string'].

● If the data written to a table
by running LOAD DATA
cannot be converted to the
data type of the table, an
error is reported.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

No. MySQL Function Syntax
Descriptio
n

GaussDB Implementation
Difference

● The LOAD DATA SET
expression does not support
the calculation of a specified
column name.

● If there is no implicit
conversion function between
the return value type of the
SET expression and the
corresponding column type,
an error is reported.

● LOAD DATA applies only to
tables but not views.

● The default newline character
of the file in Windows is
different from that in Linux.
LOAD DATA cannot identify
this scenario and reports an
error. You are advised to check
the newline character at the
end of lines in the file to be
imported.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

No. MySQL Function Syntax
Descriptio
n

GaussDB Implementation
Difference

11 Compatible with
INSERT IGNORE.

INSERT
IGNORE

● GaussDB displays the error
information after the
downgrade. MySQL records
the error information after
the downgrade to the error
stack and runs the show
warnings; command to view
the error information.

● Time type difference. For
example:
– The default values of date,

datetime, and timestamp
in GaussDB are 0.
gaussdb=# CREATE TABLE test(f1
DATE NOT NULL, f2 DATETIME
NOT NULL, f3 TIMESTAMP NOT
NULL);
CREATE TABLE
gaussdb=# INSERT IGNORE INTO
test VALUES(NULL, NULL, NULL);
WARNING: null value in column
"f1" violates not-null constraint
DETAIL: Failing row contains (null,
null, null, null).
WARNING: null value in column
"f2" violates not-null constraint
DETAIL: Failing row contains (null,
null, null, null).
WARNING: null value in column
"f3" violates not-null constraint
DETAIL: Failing row contains (null,
null, null, null).
INSERT 0 1
gaussdb=#
SELECT * FROM test;
 f1 | f2 |
f3
------------+---------------------
+---------------------
 1970-01-01 | 1970-01-01 00:00:00
| 1970-01-01 00:00:00
(1 row)

– The default values of date,
datetime, and timestamp
in MySQL are 0.
mysql> CREATE TABLE test(f1
DATE NOT NULL, f2 DATETIME
NOT NULL, f3 TIMESTAMP NOT
NULL);
Query OK, 0 rows affected (0.00
sec)

mysql> INSERT IGNORE INTO test
VALUES(NULL, NULL, NULL);
Query OK, 1 row affected, 3
warnings (0.00 sec)

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

No. MySQL Function Syntax
Descriptio
n

GaussDB Implementation
Difference

mysql> show warnings;
+---------+------
+----------------------------+
| Level | Code |
Message |
+---------+------
+----------------------------+
| Warning | 1048 | Column 'f1'
cannot be null |
| Warning | 1048 | Column 'f2'
cannot be null |
| Warning | 1048 | Column 'f3'
cannot be null |
+---------+------
+----------------------------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM test;
+------------+---------------------
+---------------------+
| f1 | f2 |
f3 |
+------------+---------------------
+---------------------+
| 0000-00-00 | 0000-00-00 00:00:00
| 0000-00-00 00:00:00 |
+------------+---------------------
+---------------------+
1 row in set (0.00 sec)

● GaussDB does not support the
MySQL bit type. Therefore,
the INSERT IGNORE error
downgrade is not supported
when the NOT NULL
constraint of the bit type is
ignored and the length of the
inserted bit type is different
from that defined.
– Bit type in GaussDB

gaussdb=# CREATE TABLE test(f1
BIT(10) NOT NULL);
CREATE TABLE
gaussdb=# INSERT IGNORE INTO
test VALUES(NULL);
ERROR: Un-support feature
DETAIL: ignore null for insert
statement is not supported in
column f1.
gaussdb=# INSERT IGNORE INTO
test VALUES('1010');
ERROR: bit string length 4 does
not match type bit(10)
CONTEXT: referenced column: f1

– Bit type in MySQL
mysql> CREATE TABLE test(f1
BIT(10) NOT NULL);
Query OK, 0 rows affected (0.00

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

No. MySQL Function Syntax
Descriptio
n

GaussDB Implementation
Difference

sec)

mysql> INSERT IGNORE INTO test
VALUES(NULL);
Query OK, 1 row affected, 1
warning (0.00 sec)

mysql> INSERT IGNORE INTO test
VALUES('1010');
Query OK, 1 row affected, 1
warning (0.01 sec)

● If the precision is specified for
the time type in MySQL, the
precision is displayed when
the zero value is inserted. It is
not displayed in GaussDB. For
example:
– Time precision specified in

GaussDB
gaussdb=# CREATE TABLE test(f1
TIME(3) NOT NULL, f2
DATETIME(3) NOT NULL, f3
TIMESTAMP(3) NOT NULL);
CREATE TABLE
gaussdb=# INSERT IGNORE INTO
test VALUES(NULL,NULL,NULL);
WARNING: null value in column
"f1" violates not-null constraint
DETAIL: Failing row contains (null,
null, null).
WARNING: null value in column
"f2" violates not-null constraint
DETAIL: Failing row contains (null,
null, null).
WARNING: null value in column
"f3" violates not-null constraint
DETAIL: Failing row contains (null,
null, null).
INSERT 0 1
gaussdb=# SELECT * FROM test;
 f1 | f2 | f3
----------+---------------------
+---------------------
 00:00:00 | 1970-01-01 00:00:00 |
1970-01-01 00:00:00
(1 row)

– Time precision specified in
MySQL
mysql> CREATE TABLE test(f1
TIME(3) NOT NULL, f2
DATETIME(3) NOT NULL, f3
TIMESTAMP(3) NOT NULL);
Query OK, 0 rows affected (0.00
sec)

mysql> INSERT IGNORE INTO test
VALUES(NULL,NULL,NULL);
Query OK, 1 row affected, 3

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

No. MySQL Function Syntax
Descriptio
n

GaussDB Implementation
Difference

warnings (0.00 sec)

mysql> SELECT * FROM test;
+--------------
+-------------------------
+-------------------------+
| f1 | f2 |
f3 |
+--------------
+-------------------------
+-------------------------+
| 00:00:00.000 | 0000-00-00
00:00:00.000 | 0000-00-00
00:00:00.000 |
+--------------
+-------------------------
+-------------------------+
1 row in set (0.00 sec)

● The execution process in
MySQL is different from that
in GaussDB. Therefore, the
number of generated
warnings may be different.
For example:
– Number of warnings

generated in GaussDB
gaussdb=# CREATE TABLE test(f1
INT, f2 INT not null);
CREATE TABLE
gaussdb=# INSERT INTO test
VALUES(1,0),(3,0),(5,0);
INSERT 0 3
gaussdb=# INSERT IGNORE INTO
test SELECT f1+1, f1/f2 FROM test;
WARNING: division by zero
CONTEXT: referenced column: f2
WARNING: null value in column
"f2" violates not-null constraint
DETAIL: Failing row contains (2,
null).
WARNING: division by zero
CONTEXT: referenced column: f2
WARNING: null value in column
"f2" violates not-null constraint
DETAIL: Failing row contains (4,
null).
WARNING: division by zero
CONTEXT: referenced column: f2
WARNING: null value in column
"f2" violates not-null constraint
DETAIL: Failing row contains (6,
null).
INSERT 0 3

– Number of warnings
generated in MySQL
mysql> CREATE TABLE test(f1 INT,
f2 INT not null);
Query OK, 0 rows affected (0.01

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

No. MySQL Function Syntax
Descriptio
n

GaussDB Implementation
Difference

sec)

mysql> INSERT INTO test
VALUES(1,0),(3,0),(5,0);
Query OK, 3 rows affected (0.00
sec)
Records: 3 Duplicates: 0
Warnings: 0

mysql> INSERT IGNORE INTO test
SELECT f1+1, f1/f2 FROM test;
Query OK, 3 rows affected, 4
warnings (0.00 sec)
Records: 3 Duplicates: 0
Warnings: 4

● The differences between
MySQL's and GaussDB's
INSERT IGNORE in triggers
are as follows:
– INSERT IGNORE used in a

GaussDB trigger
gaussdb=# CREATE TABLE test1(f1
INT NOT NULL);
CREATE TABLE
gaussdb=# CREATE TABLE test2(f1
INT);
CREATE TABLE
gaussdb=# CREATE OR REPLACE
FUNCTION trig_test() RETURNS
TRIGGER AS $$
gaussdb$# BEGIN
gaussdb$# INSERT IGNORE INTO
test1 VALUES(NULL);
gaussdb$# RETURN NEW;
gaussdb$# END;
gaussdb$# $$ LANGUAGE plpgsql;
CREATE FUNCTION
gaussdb=# CREATE TRIGGER trig2
BEFORE INSERT ON test2 FOR
EACH ROW EXECUTE PROCEDURE
trig_test();
CREATE TRIGGER
gaussdb=# INSERT INTO test2
VALUES(NULL);
WARNING: null value in column
"f1" violates not-null constraint
DETAIL: Failing row contains (null).
CONTEXT: SQL statement "INSERT
IGNORE INTO test1
VALUES(NULL)"
PL/pgSQL function trig_test() line
3 at SQL statement
INSERT 0 1
gaussdb=# SELECT * FROM test1;
 f1

 0
(1 rows)

gaussdb=# SELECT * FROM test2;

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

No. MySQL Function Syntax
Descriptio
n

GaussDB Implementation
Difference

 f1

(1 rows)

– INSERT IGNORE used in a
MySQL trigger
mysql> CREATE TABLE test1(f1 INT
NOT NULL);
Query OK, 0 rows affected (0.01
sec)

mysql> CREATE TABLE test2(f1
INT);
Query OK, 0 rows affected (0.00
sec)

mysql> DELIMITER ||
mysql> CREATE TRIGGER trig2
BEFORE INSERT ON test2 FOR
EACH ROW
 -> BEGIN
 -> INSERT IGNORE into test1
values(NULL);
 -> END||
Query OK, 0 rows affected (0.01
sec)

mysql> DELIMITER ;
mysql> INSERT INTO test2
VALUES(NULL);
ERROR 1048 (23000): Column 'f1'
cannot be null
mysql> INSERT IGNORE INTO test2
VALUES(NULL);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM test1;
+----+
| f1 |
+----+
| 0 |
+----+
1 row in set (0.00 sec)

mysql> SELECT * FROM test2;
+------+
| f1 |
+------+
| NULL |
+------+
1 row in set (0.00 sec)

● The implementation
mechanism of Boolean and
serial in GaussDB is different
from that in MySQL.
Therefore, the default zero
value in GaussDB is different
from that in MySQL. For
example:

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

No. MySQL Function Syntax
Descriptio
n

GaussDB Implementation
Difference

– Behavior in GaussDB
gaussdb=# CREATE TABLE test(f1
SERIAL, f2 BOOL NOT NULL);
NOTICE: CREATE TABLE will create
implicit sequence "test_f1_seq" for
serial column "test.f1"
CREATE TABLE
gaussdb=# INSERT IGNORE INTO
test values(NULL,NULL);
WARNING: null value in column
"f1" violates not-null constraint
DETAIL: Failing row contains (null,
null).
WARNING: null value in column
"f2" violates not-null constraint
DETAIL: Failing row contains (null,
null).
INSERT 0 1
gaussdb=# SELECT * FROM test;
 f1 | f2
----+----
 0 | f
(1 row)

– Behavior in MySQL
mysql> CREATE TABLE test(f1
SERIAL, f2 BOOL NOT NULL);
Query OK, 0 rows affected (0.00
sec)

mysql> INSERT IGNORE INTO test
values(NULL,NULL);
Query OK, 1 row affected, 1
warning (0.00 sec)

mysql> SELECT * FROM test;
+----+----+
| f1 | f2 |
+----+----+
| 1 | 0 |
+----+----+
1 row in set (0.00 sec)

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

2.8.3 DCL
No. Description Syntax Difference

1 Set user-defined
variables.

SET ● Difference in the
length of a user-
defined variable. For
example:
– There is no

restriction on the
length of MySQL
user-defined
variable names.

– The length of a
user-defined
GaussDB variable
name cannot
exceed 64 bytes. If
the length exceeds
64 bytes, the excess
part will be
truncated and an
alarm will be
generated.

2 Support the SET
TRANSACTION
syntax.

SET TRANSACTION In MySQL, you can set
the transaction isolation
level and read/write
mode for the current
session and global. In
GaussDB, you need to set
the
b_format_behavior_com
pat_options parameter
to include
set_session_transaction
for the current session.
The global setting takes
effect only for the current
database.

3 Set names with
COLLATE specified.

SET [SESSION |
LOCAL] NAMES
{'charset_name'
[COLLATE
'collation_name'] |
DEFAULT};

GaussDB does not allow
charset_name to be
different from the
database character set.
For details, see "SQL
Reference > SQL Syntax >
S > SET" in Developer
Guide.

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

2.9 Drivers

2.9.1 JDBC

2.9.1.1 JDBC API Reference

Obtaining Data from a Result Set
ResultSet objects provide a variety of methods to obtain data from a result set.
Table 1 lists the common methods for obtaining data. If you want to know more
about other methods, see JDK official documents.

Table 2-24 Common methods for obtaining data from a result set

Method Description Difference

int getInt(int
columnIndex)

Obtains int
data by
column
index.

-

int getInt(String
columnLabel)

Obtains int
data by
column
name.

-

String
getString(int
columnIndex)

Obtains
string data
by column
index.

If the column type is integer and the column
contains the ZEROFILL attribute, GaussDB
pads 0s to meet the width required by the
ZEROFILL attribute and outputs the result.
MySQL directly outputs the result.

String
getString(String
columnLabel)

Obtains
string data
by column
name.

If the column type is integer and the column
contains the ZEROFILL attribute, GaussDB
pads 0s to meet the width required by the
ZEROFILL attribute and outputs the result.
MySQL directly outputs the result.

Date getDate(int
columnIndex)

Obtains
date data
by column
index.

-

Date
getDate(String
columnLabel)

Obtains
date data
by column
name.

-

GaussDB
MySQL Compatibility(Centralized) 2 MySQL Compatibility in B-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

3 MySQL Compatibility in M-Compatible
Mode

3.1 MySQL Compatibility Overview
This chapter compares the M-compatible mode in GaussDB with MySQL 5.7. Only
compatibility features added later than GaussDB Kernel 505.1 are described. You
are advised to view the specifications and restrictions of the features in Developer
Guide.

GaussDB is compatible with MySQL in terms of data types, SQL functions, and
database objects.

The execution plan, optimization, and EXPLAIN result in GaussDB are different
from those in MySQL.

The underlying framework implementation of the GaussDB is different from that
of MySQL. Therefore, there are still some differences between GaussDB and
MySQL.

NO TE

The underlying architecture of M-Compatibility is different from that of MySQL. Therefore,
the query performance of schemas with the same name as MySQL under
information_schema and m_schema may be different. For details, see chapter 6 in M-
Compatibility Developer Guide. For example, the execution of the count function cannot be
optimized. The time consumed by the SELECT * and SELECT COUNT(*) statements is similar.

Database and Schema Design
MySQL data objects include database, table, index, view, trigger, and proc. The
mapping relationship between MySQL object layers and GaussDB is from top to
bottom and one-to-many, as shown in the following figure.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

Figure 3-1 Differences between databases and schemas in MySQL and GaussDB

● In MySQL, database and schema are synonyms. In GaussDB, a database can
have multiple schemas. In this feature, each database in MySQL is mapped to
a schema in GaussDB.

● In MySQL, an index belongs to a table. In GaussDB, an index belongs to a
schema. As a result, an index name must be unique in a schema in GaussDB
and must be unique in a table in MySQL. This difference will be retained as a
current constraint.

3.2 Data Types
The data types of GaussDB are the same as those of MySQL in most function
scenarios, but there are some differences.

● Unless otherwise specified, the precision, scale, and number of bits of some
data types cannot be defined as floating-point values. You are advised to use
valid integer values.

● The command output of GaussDB ends with \0. MySQL displays the entire
character string. Therefore, GaussDB truncates the bytes after \0, but MySQL
does not.
Example:
-- GaussDB
m_db=# SELECT FORMAT(1000, 4, 'bg_BG');
 format

 1
(1 row)
m_db=# SELECT CONCAT('123', b'00000000', 'aa');
 concat

 123

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

(1 row)

-- MySQL
mysql> SELECT FORMAT(1000, 4, 'bg_BG');
+--------------------------+
| FORMAT(1000, 4, 'bg_BG') |
+--------------------------+
| 1 000,0000 |
+--------------------------+
1 row in set (0.01 sec)
mysql> SELECT CONCAT('123', b'00000000', 'aa');
+----------------------------------+
| CONCAT('123', b'00000000', 'aa') |
+----------------------------------+
| 123 aa |
+----------------------------------+
1 row in set (0.00 sec)

3.2.1 Numeric Data Types

Table 3-1 Integer types

No. MySQL GaussDB Difference

1 BOOL Supported,
with
differences

Output format: The output of SELECT
TRUE/FALSE in GaussDB is t or f, and that
in MySQL is 1 or 0.
MySQL: The BOOL/BOOLEAN type is
actually mapped to the TINYINT type.

2 BOOLEAN Supported,
with
differences

3 TINYINT[(M
)]
[UNSIGNED
]
[ZEROFILL]

Supported,
with
differences

For details, see the following note.

4 SMALLINT[(
M)]
[UNSIGNED
]
[ZEROFILL]

Supported,
with
differences

For details, see the following note.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

No. MySQL GaussDB Difference

5 MEDIUMIN
T[(M)]
[UNSIGNED
]
[ZEROFILL]

Supported,
with
differences

MySQL requires 3 bytes to store
MEDIUMINT data.
● The signed range is –8388608 to

+8388607.
● The unsigned range is 0 to +16777215.
GaussDB is mapped to the INT type. Four
bytes are required for storage. The value
range is determined based on boundary
values.
● The signed range is –8388608 to

+8388607.
● The unsigned range is 0 to +16777215.
For other differences, see the following
note.

6 INT[(M)]
[UNSIGNED
]
[ZEROFILL]

Supported,
with
differences

For details, see the following note.

7 INTEGER[(M
)]
[UNSIGNED
]
[ZEROFILL]

Supported,
with
differences

For details, see the following note.

8 BIGINT[(M)
]
[UNSIGNED
]
[ZEROFILL]

Supported,
with
differences

For details, see the following note.

NO TE

Input formats:
● MySQL:

If a character string with multiple decimal points (such as "1.2.3.4.5") is entered,
MySQL will misparse the character string in loose mode, throw a warning, and insert
the character string into the table successfully. For example, after "1.2.3.4.5" is inserted
into the table, the value is 12.

● GaussDB:
If a character string with multiple decimal points (such as "1.2.3.4.5") is entered in
loose mode, the characters after the second decimal point are truncated as invalid
characters, a warning is thrown, and the character string is inserted into the table
successfully. For example, after "1.2.3.4.5" is inserted into the table, the value is 1.
After "1.6.3.4.5" is inserted into the table, the value is 2.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

Example: When CREATE TABLE AS with UNION is used, GaussDB uses the default
value of max_length for an integer CONST node, while MySQL calculates the
max_length value based on the actual situation.

-- GaussDB
m_db=# CREATE TABLE test_int AS SELECT 1234567 UNION ALL SELECT '456789';
m_db=# DESC test_int;
 Field | Type | Null | Key | Default | Extra
----------+-------------+------+-----+---------+-------
 ?column? | varchar(11) | YES | | |
(1 row)
m_db=# DROP TABLE test_int;

-- MySQL
mysql> CREATE TABLE test_int AS SELECT 1234567 UNION ALL SELECT '456789';
mysql> DESC test_int;
+---------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+------------+------+-----+---------+-------+
| 1234567 | varchar(7) | NO | | | |
+---------+------------+------+-----+---------+-------+
1 row in set (0.00 sec)
mysql> DROP TABLE test_int;

Table 3-2 Arbitrary precision types

No. MySQL GaussDB Difference

1 DECIMAL[(
M[,D])]
[ZEROFILL]

Supported,
with
differences

MySQL decimal uses a 9 x 9 array to store
values. The integer part and decimal part
are stored separately. If the length exceeds
the value, the decimal part is truncated
first. GaussDB truncates an integer that
contains more than 81 digits.

2 NUMERIC[(
M[,D])]
[ZEROFILL]

Supported,
with
differences

3 DEC[(M[,D])
]
[ZEROFILL]

Supported,
with
differences

4 FIXED[(M[,D
])]
[ZEROFILL]

Supported,
with
differences

Table 3-3 Floating-point types

No. MySQL GaussDB Difference

1 FLOAT[(M,D
)]
[ZEROFILL]

Supported,
with
differences

The FLOAT data type does not support
partitioned tables with the key partitioning
policy.

2 FLOAT(p)
[ZEROFILL]

Supported,
with
differences

The FLOAT data type does not support
partitioned tables with the key partitioning
policy.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

No. MySQL GaussDB Difference

3 DOUBLE[(M
,D)]
[ZEROFILL]

Supported,
with
differences

The DOUBLE data type does not support
partitioned tables with the key partitioning
policy.

4 DOUBLE
PRECISION[(
M,D)]
[ZEROFILL]

Supported,
with
differences

The DOUBLE PRECISION data type does not
support partitioned tables with the key
partitioning policy.

5 REAL[(M,D)
]
[ZEROFILL]

Supported,
with
differences

The REAL data type does not support
partitioned tables with the key partitioning
policy.

NO TE

In the scenario where the driver adopts FLOAT and DOUBLE types with a precision scale, no
error is reported when the input data exceeds the range.

3.2.2 Date and Time Data Types

Table 3-4 Date and time data types

No. MySQL GaussDB Difference

1 DATE Supported,
with
differences.

GaussDB supports the date data type.
Compared with MySQL, GaussDB has the
following differences in specifications:
● Input formats:

– Separator: A backslash (\) is regarded
as an escape character in both
MySQL and GaussDB. However,
MySQL supports \0, but GaussDB
does not support \0. Therefore,
GaussDB reports an error when the
backslash is used as a separator and
the separator is followed by 0.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

No. MySQL GaussDB Difference

2 DATETIME[(f
sp)]

Supported,
with
differences.

GaussDB supports the datetime data type.
Compared with MySQL, GaussDB has the
following differences in specifications:
● Input formats:

– Separator: A backslash (\) is regarded
as an escape character in both
MySQL and GaussDB. However,
MySQL supports \0, but GaussDB
does not support \0. Therefore,
GaussDB reports an error when the
backslash is used as a separator and
the separator is followed by 0.

3 TIMESTAMP[
(fsp)]

Supported,
with
differences.

GaussDB supports the timestamp data
type. Compared with MySQL, GaussDB has
the following differences in specifications:
● Input formats:

– Separator: A backslash (\) is regarded
as an escape character in both
MySQL and GaussDB. However,
MySQL supports \0, but GaussDB
does not support \0. Therefore,
GaussDB reports an error when the
backslash is used as a separator and
the separator is followed by 0.

● Default value:
– In MySQL 5.7, the default value of

the timestamp column is the real
time when data is inserted. Same as
MySQL 8.0, GaussDB has no default
value set for this column. That is,
when null is inserted, the value is
null.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

No. MySQL GaussDB Difference

4 TIME[(fsp)] Supported,
with
differences.

GaussDB supports the time data type.
Compared with MySQL, GaussDB has the
following differences in specifications:
● Input formats:

– Separator: A backslash (\) is regarded
as an escape character in both
MySQL and GaussDB. However,
MySQL supports \0, but GaussDB
does not support \0. Therefore,
GaussDB reports an error when the
backslash is used as a separator and
the separator is followed by 0.

● When the hour, minute, second, and
nanosecond of the time type are 0, the
sign bits of GaussDB and MySQL may be
different.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

No. MySQL GaussDB Difference

5 YEAR[(4)] Supported. GaussDB supports the year data type.
Compared with MySQL, GaussDB has the
following differences in specifications:
● When a field of the year type is created,

"year" is displayed in GaussDB and
"year(4)" is displayed in MySQL.

-- GaussDB
m_db=# create table t_year (c_year year);
CREATE TABLE
m_db=# desc t_year;
 Field | Type | Null | Key | Default | Extra
--------+------+------+-----+---------+-------
 c_year | year | YES | | |
(1 row)
m_db=# create table t1 as(select * from t_year);
INSERT 0 0
m_db=# desc t1;
 Field | Type | Null | Key | Default | Extra
--------+------+------+-----+---------+-------
 c_year | year | YES | | |
(1 row)
-- MySQL
mysql> create table t_year (c_year year);
Query OK, 0 rows affected (0.01 sec)
mysql> desc t_year;
+--------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------+------+-----+---------+-------+
| c_year | year(4) | YES | | NULL | |
+--------+---------+------+-----+---------+-------+
1 row in set (0.00 sec)
mysql> create table t1 as(select * from t_year);
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> desc t1;
+--------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------+------+-----+---------+-------+
| c_year | year(4) | YES | | NULL | |
+--------+---------+------+-----+---------+-------+
1 row in set (0.00 sec)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

NO TE

● GaussDB does not support ODBC syntax literals:
{ d 'str' }
{ t 'str' }
{ ts 'str' }

● GaussDB supports standard SQL literals, and precision can be added after type
keywords, but MySQL does not support the following:
DATE[(n)] 'str'
TIME[(n)] 'str'
TIMESTAMP[(n)] 'str'

● If you specify a precision for the DATETIME, TIME, or TIMESTAMP data type greater
than the maximum precision supported by the data type, GaussDB truncates the
precision to the maximum precision supported by the data type, whereas MySQL reports
an error.

3.2.3 String Data Types

Table 3-5 String data types

No. MySQL GaussDB Difference

1 CHAR(M) Supported,
with
differences

● Input formats:
– After a binary or hexadecimal

character string is entered, GaussDB
outputs a hexadecimal character
string, and MySQL escapes the
character string based on the ASCII
code table. If the character string
cannot be escaped, the output is
empty.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

No. MySQL GaussDB Difference

2 VARCHAR(M) Supported,
with
differences

● Input formats:
– The length of parameters and return

values of GaussDB user-defined
functions cannot be verified. The
length of stored procedure
parameters cannot be verified.
However, MySQL supports these
functions.

– The length of temporary variables in
GaussDB user-defined functions and
stored procedures can be verified,
and an error or truncation alarm is
reported in strict or loose mode.
However, MySQL does not support
these functions.

– After a binary or hexadecimal
character string is entered, GaussDB
outputs a hexadecimal character
string, and MySQL escapes the
character string based on the ASCII
code table. If the character string
cannot be escaped, the output is
empty.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

No. MySQL GaussDB Difference

3 TINYTEXT Supported,
with
differences

● Input formats:
– Default value: When creating a table

column, you can set a default value
in the syntax. MySQL does not allow
you to set a default value.

– After a binary or hexadecimal
character string is entered, GaussDB
outputs a hexadecimal character
string, and MySQL escapes the
character string based on the ASCII
code table. If the character string
cannot be escaped, the output is
empty.

● Primary key: In MySQL, the TINYTEXT
type does not support primary keys, but
GaussDB supports.

● Index: In MySQL, the TINYTEXT type
does not support other index methods
except prefix indexes. GaussDB supports
these index methods.

● Foreign key: In MySQL, the TINYTEXT
type cannot be used as the referencing
column or referenced column of a
foreign key, but GaussDB supports this
operation.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

No. MySQL GaussDB Difference

4 TEXT Supported,
with
differences

● Input formats:
– Default value: When creating a table

column, you can set a default value
in the syntax. MySQL does not allow
you to set a default value.

– After a binary or hexadecimal
character string is entered, GaussDB
outputs a hexadecimal character
string, and MySQL escapes the
character string based on the ASCII
code table. If the character string
cannot be escaped, the output is
empty.

● Primary key: In MySQL, the TEXT type
does not support primary keys, but
GaussDB supports.

● Index: In MySQL, the TEXT type does
not support other index methods except
prefix indexes. GaussDB supports these
index methods.

● Foreign key: In MySQL, the TINYTEXT
type cannot be used as the referencing
column or referenced column of a
foreign key, but GaussDB supports this
operation.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

No. MySQL GaussDB Difference

5 MEDIUMTEX
T

Supported,
with
differences

● Input formats:
– Default value: When creating a table

column, you can set a default value
in the syntax. MySQL does not allow
you to set a default value.

– After a binary or hexadecimal
character string is entered, GaussDB
outputs a hexadecimal character
string, and MySQL escapes the
character string based on the ASCII
code table. If the character string
cannot be escaped, the output is
empty.

● Primary key: In MySQL, the
MEDIUMTEXT type does not support
primary keys, but GaussDB supports.

● Index: In MySQL, the MEDIUMTEXT
type does not support other index
methods except prefix indexes. GaussDB
supports these index methods.

● Foreign key: In MySQL, the TINYTEXT
type cannot be used as the referencing
column or referenced column of a
foreign key, but GaussDB supports this
operation.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

No. MySQL GaussDB Difference

6 LONGTEXT Supported,
with
differences

● Input formats:
– GaussDB supports a maximum of 1

GB, and MySQL supports a
maximum of 4 GB minus 1 byte.

– Default value: When creating a table
column, you can set a default value
in the syntax. MySQL does not allow
you to set a default value.

– After a binary or hexadecimal
character string is entered, GaussDB
outputs a hexadecimal character
string, and MySQL escapes the
character string based on the ASCII
code table. If the character string
cannot be escaped, the output is
empty.

● Primary key: In MySQL, the LONGTEXT
type does not support primary keys, but
GaussDB supports.

● Index: In MySQL, the LONGTEXT type
does not support other index methods
except prefix indexes. GaussDB supports
these index methods.

● Foreign key: In MySQL, the TINYTEXT
type cannot be used as the referencing
column or referenced column of a
foreign key, but GaussDB supports this
operation.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

3.2.4 Binary Data Types

Table 3-6 Binary data types

No. MySQL GaussDB Difference

1 BINARY[(M)] Supported,
with
differences

● Input formats:
– After a binary or hexadecimal

character string is entered, GaussDB
outputs a hexadecimal character
string, and MySQL escapes the
character string based on the ASCII
code table. If the character string
cannot be escaped, the output is
empty.

– If the length of the inserted string is
less than the target length, the
padding character is 0x20 in
GaussDB and 0x00 in MySQL.

● Character set: The default character set
is the initialized character set of the
database. For MySQL, the default
character set is BINARY.

● Output formats:
– When the JDBC protocol is used, a

space at the end of the BINARY type
is displayed as a space, and that in
MySQL is displayed as \x00.

– In loose mode, if characters (such as
Chinese characters) of the BINARY
type exceed n bytes, the excess
characters will be truncated. MySQL
retains the first n bytes. However,
garbled characters are displayed in
the output.

– In MySQL 8.0 and later versions,
results starting with 0x are returned
by default. In GaussDB, results in the
format of "\x...\x...\x..." are returned.

NOTE
Due to the differences between GaussDB
and MySQL in BINARY fillers and \0
truncation, GaussDB and MySQL have
different performance in scenarios such as
operator comparison calculation, character
string-related system function calculation,
index matching, and data import and export.
For details about the difference scenarios,
see the examples in this section.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

No. MySQL GaussDB Difference

2 VARBINARY(
M)

Supported,
with
differences

● Input formats:
– After a binary or hexadecimal

character string is entered, GaussDB
outputs a hexadecimal character
string, and MySQL escapes the
character string based on the ASCII
code table. If the character string
cannot be escaped, the output is
empty.

● Character set: The default character set
is the initialized character set of the
database. For MySQL, the default
character set is BINARY.

● Output formats:
– When the JDBC protocol is used, a

space at the end of the BINARY type
is displayed as a space, and that in
MySQL is displayed as \x00.

– In MySQL 8.0 and later versions,
results starting with 0x are returned
by default. In GaussDB, results in the
format of "\x...\x...\x..." are returned.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

No. MySQL GaussDB Difference

3 TINYBLOB Supported,
with
differences

● Input formats:
– Default value: When creating a table

column, you can set a default value
in the syntax. MySQL does not allow
you to set a default value.

– After a binary or hexadecimal
character string is entered, GaussDB
outputs a hexadecimal character
string, and MySQL escapes the
character string based on the ASCII
code table. If the character string
cannot be escaped, the output is
empty.

● Primary key: In MySQL, the TINYBLOB
type does not support primary keys, but
GaussDB supports.

● Index: In MySQL, the TINYBLOB type
does not support other index methods
except prefix indexes. GaussDB supports
these index methods.

● Foreign key: In MySQL, the TINYTEXT
type cannot be used as the referencing
column or referenced column of a
foreign key, but GaussDB supports this
operation.

● Output formats: In MySQL 8.0 and later
versions, results starting with 0x are
returned by default. In GaussDB, results
in the format of "\x...\x...\x..." are
returned.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

No. MySQL GaussDB Difference

4 BLOB Supported,
with
differences

● Input formats:
– Default value: When creating a table

column, you can set a default value
in the syntax. MySQL does not allow
you to set a default value.

– After a binary or hexadecimal
character string is entered, GaussDB
outputs a hexadecimal character
string, and MySQL escapes the
character string based on the ASCII
code table. If the character string
cannot be escaped, the output is
empty.

● Primary key: In MySQL, the BLOB type
does not support primary keys, but
GaussDB supports.

● Index: In MySQL, the BLOB type does
not support other index methods except
prefix indexes. GaussDB supports these
index methods.

● Foreign key: In MySQL, the TINYTEXT
type cannot be used as the referencing
column or referenced column of a
foreign key, but GaussDB supports this
operation.

● Output formats: In MySQL 8.0 and later
versions, results starting with 0x are
returned by default. In GaussDB, results
in the format of "\x...\x...\x..." are
returned.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

No. MySQL GaussDB Difference

5 MEDIUMBLO
B

Supported,
with
differences

● Input formats:
– Default value: When creating a table

column, you can set a default value
in the syntax. MySQL does not allow
you to set a default value.

– After a binary or hexadecimal
character string is entered, GaussDB
outputs a hexadecimal character
string, and MySQL escapes the
character string based on the ASCII
code table. If the character string
cannot be escaped, the output is
empty.

● Primary key: In MySQL, the
MEDIUMBLOB type does not support
primary keys, but GaussDB supports.

● Index: In MySQL, the MEDIUMBLOB
type does not support other index
methods except prefix indexes. GaussDB
supports these index methods.

● Foreign key: In MySQL, the TINYTEXT
type cannot be used as the referencing
column or referenced column of a
foreign key, but GaussDB supports this
operation.

● Output formats: In MySQL 8.0 and later
versions, results starting with 0x are
returned by default. In GaussDB, results
in the format of "\x...\x...\x..." are
returned.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

No. MySQL GaussDB Difference

6 LONGBLOB Supported,
with
differences

● Value range: a maximum of 1 GB.
MySQL supports a maximum of 4 GB
minus 1 byte.

● Input formats:
– Default value: When creating a table

column, you can set a default value
in the syntax. MySQL does not allow
you to set a default value.

– After a binary or hexadecimal
character string is entered, GaussDB
outputs a hexadecimal character
string, and MySQL escapes the
character string based on the ASCII
code table. If the character string
cannot be escaped, the output is
empty.

● Primary key: In MySQL, the LONGBLOB
type does not support primary keys, but
GaussDB supports.

● Index: In MySQL, the LONGBLOB type
does not support other index methods
except prefix indexes. GaussDB supports
these index methods.

● Foreign key: In MySQL, the TINYTEXT
type cannot be used as the referencing
column or referenced column of a
foreign key, but GaussDB supports this
operation.

● Output formats: In MySQL 8.0 and later
versions, results starting with 0x are
returned by default. In GaussDB, results
in the format of "\x...\x...\x..." are
returned.

7 BIT[(M)] Supported,
with
differences

Output formats:
● All outputs are displayed as binary

character strings. MySQL escapes the
character string based on the ASCII
code table. If the character string
cannot be escaped, the output is empty.

● In MySQL 8.0 and later versions, 0 is
added at the beginning of each result
by default. In GaussDB, 0 is not added.

Example:
-- GaussDB
m_db=# CREATE TABLE test(a BINARY(10)) DISTRIBUTE BY REPLICATION;

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

CREATE TABLE
m_db=# INSERT INTO test VALUES(0x8000);
INSERT 0 1
m_db=# SELECT hex(a) FROM test;
 hex

 80202020202020202020
(1 row)

m_db=# SELECT * FROM test WHERE hex(a) = 80000000000000000000;
 a

(0 rows)
m_db=# DROP TABLE test;
DROP TABLE

m_db=# CREATE TABLE test2(a BINARY(10)) DISTRIBUTE BY REPLICATION;
CREATE TABLE
m_db=# INSERT INTO test2 VALUES(0x80008000);
INSERT 0 1
m_db=# SELECT hex(a) FROM test2;
 hex

 80202020202020202020
(1 row)

m_db=# DROP TABLE test2;
DROP TABLE

-- MySQL
mysql> CREATE TABLE test(a BINARY(10));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO test VALUES(0x8000);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT hex(a) FROM test;
+----------------------+
| hex(a) |
+----------------------+
| 80000000000000000000 |
+----------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM test WHERE hex(a) = 80000000000000000000;
+------------+
| a |
+------------+
| ▒ |
+------------+
1 row in set (0.00 sec)

mysql> DROP TABLE test;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE test2(a BINARY(10));
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO test2 VALUES(0x80008000);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT hex(a) FROM test2;
+----------------------+
| hex(a) |
+----------------------+
| 80008000000000000000 |
+----------------------+
1 row in set (0.00 sec)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

mysql> DROP TABLE test2;
Query OK, 0 rows affected (0.00 sec)

3.2.5 JSON

Table 3-7 JSON Data Type

No. MySQL GaussDB Difference

1 JSON Supported,
with
differences.

GaussDB supports the JSON data type.
Compared with MySQL, GaussDB has the
following differences in specifications:
● Value range:

In MySQL, the maximum size of the
JSON data type is 4 GB. However, in
GaussDB, the maximum size of the
JSON data type is less than 1 GB, and
the maximum number of key-value pairs
of an object and the maximum number
of elements in an array are also less
than those in MySQL.

● Difference in collation:
In MySQL, when the collation function is
used to separately query columns of the
JSON type, the returned collation is
BINARY. However, utf8mb4_bin is
returned in GaussDB. In other scenarios,
utf8mb4_bin is used, which is the same
as that of MySQL.

3.2.6 Attributes Supported by Data Types

Table 3-8 Attributes supported by data types

No. MySQL GaussDB

1 NULL Supported.

2 NOT NULL Supported.

3 DEFAULT Supported.

4 ON UPDATE Supported.

4 PRIMARY KEY Supported.

5 AUTO_INCREMENT Supported.

6 CHARACTER SET name Supported.

7 COLLATE name Supported.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

No. MySQL GaussDB

8 ZEROFILL Supported.

When CREATE TABLE AS is used to create a table and default values are set for
fields of the VARBINARY type, the command output of SHOW CREATE TABLE,
DESC, or \d is different from that of MySQL. The value displayed in GaussDB is a
hexadecimal value, but MySQL displays the original value.

Example:
m_db=# CREATE TABLE test_int(
 int_col INT
);
m_db=# CREATE TABLE test_varbinary(
 varbinary_col VARBINARY(20) default 'gauss'
) AS SELECT * FROM test_int;
m_db=# SHOW CREATE TABLE test_varbinary;
 Table | Create Table
----------------+---
 test_varbinary | SET search_path = public; +
 | CREATE TABLE test_varbinary (+
 | varbinary_col varbinary(20) DEFAULT X'6761757373', +
 | int_col integer +
 |) +
 | CHARACTER SET = "UTF8" COLLATE = "utf8mb4_general_ci" +
 | WITH (orientation=row, compression=no, storage_type=USTORE, segment=off);
(1 row)
m_db=# DROP TABLE test_int, test_varbinary;

mysql> CREATE TABLE test_int(
 int_col INT
);
mysql> CREATE TABLE test_varbinary(
 varbinary_col VARBINARY(20) default 'gauss'
) AS SELECT * FROM test_int;
mysql> SHOW CREATE TABLE test_varbinary;
+----------------
+--+
| Table | Create
Table |
+----------------
+--+
| test_varbinary | CREATE TABLE `test_varbinary` (
 `varbinary_col` varbinary(20) DEFAULT 'gauss',
 `int_vol` int(11) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 |
+----------------
+--+
1 row in set (0.00 sec)
mysql> DROP TABLE test_int, test_varbinary;

3.2.7 Data Type Conversion
Conversion between different data types is supported. Data type conversion is
involved in the following scenarios:

● The data types of operands of operators (such as comparison and arithmetic
operators) are inconsistent. It is commonly used for comparison operations in
query conditions or join conditions.

● The data types of arguments and parameters are inconsistent when a
function is called.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

● The data types of target columns to be updated by DML statements
(including INSERT, UPDATE, MERGE, and REPLACE) and the defined column
types are inconsistent.

● Explicit type conversion: CAST(expr AS datatype), which converts an
expression to a data type.

● After the target data type of the final projection column is determined by set
operations (UNION, MINUS, EXCEPT, and INTERSECT), the type of the
projection column in each SELECT statement is inconsistent with the target
data type.

● In other expression calculation scenarios, the target data type used for
comparison or final result is determined based on the data type of different
expressions.

● When the collation of a common character string is BINARY, the character
string is converted to the corresponding binary type (for example, TEXT is
converted to BLOB, and VARCHAR is converted to VARBINARY).

There are three types of data type conversion differences: implicit conversion,
explicit conversion, UNION/CASE, and decimal type.

Differences in Implicit Type Conversion
● In GaussDB, the conversion rules from small types to small types are used. In

MySQL, the conversion rules from small types to large types and from large
types to small types are used.

● Due to data type differences, some output formats of implicit conversion in
GaussDB are inconsistent.

● During implicit conversion from the BIT data type to the character data type
and binary data type in GaussDB, some output behaviors are inconsistent.
GaussDB outputs a hexadecimal character string, and MySQL escapes the
character string based on the ASCII code table. If the character string cannot
be escaped, the output is empty.
Example:
m_db=# CREATE TABLE bit_storage (
 VS_COL1 BIT(4),
 VS_COL2 BIT(4),
 VS_COL3 BIT(4),
 VS_COL4 BIT(4),
 VS_COL5 BIT(4),
 VS_COL6 BIT(4),
 VS_COL7 BIT(4),
 VS_COL8 BIT(4)
) DISTRIBUTE BY REPLICATION;
m_db=# CREATE TABLE string_storage (
 VS_COL1 BLOB,
 VS_COL2 TINYBLOB,
 VS_COL3 MEDIUMBLOB,
 VS_COL4 LONGBLOB,
 VS_COL5 TEXT,
 VS_COL6 TINYTEXT,
 VS_COL7 MEDIUMTEXT,
 VS_COL8 LONGTEXT
) DISTRIBUTE BY REPLICATION;
m_db=# INSERT INTO bit_storage VALUES(B'101', B'101', B'101', B'101', B'101', B'101', B'101', B'101');
m_db=# INSERT INTO string_storage SELECT * FROM bit_storage;
m_db=# SELECT * FROM string_storage;
 VS_COL1 | VS_COL2 | VS_COL3 | VS_COL4 | VS_COL5 | VS_COL6 | VS_COL7 | VS_COL8
---------+---------+---------+---------+---------+---------+---------+---------

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

 \x05 | \x05 | \x05 | \x05 | \x05 | \x05 | \x05 | \x05
(1 row)
m_db=# DROP TABLE bit_storage, string_storage;

mysql> CREATE TABLE bit_storage (
 VS_COL1 BIT(4),
 VS_COL2 BIT(4),
 VS_COL3 BIT(4),
 VS_COL4 BIT(4),
 VS_COL5 BIT(4),
 VS_COL6 BIT(4),
 VS_COL7 BIT(4),
 VS_COL8 BIT(4)
);
mysql> CREATE TABLE bit_storage (
 VS_COL1 BIT(4),
 VS_COL2 BIT(4),
 VS_COL3 BIT(4),
 VS_COL4 BIT(4),
 VS_COL5 BIT(4),
 VS_COL6 BIT(4),
 VS_COL7 BIT(4),
 VS_COL8 BIT(4)
);
mysql> INSERT INTO bit_storage VALUES(B'101', B'101', B'101', B'101', B'101', B'101', B'101', B'101');
mysql> INSERT INTO string_storage SELECT * FROM bit_storage;
mysql> SELECT * FROM string_storage;
+---------+---------+---------+---------+---------+---------+---------+---------+
| VS_COL1 | VS_COL2 | VS_COL3 | VS_COL4 | VS_COL5 | VS_COL6 | VS_COL7 | VS_COL8 |
+---------+---------+---------+---------+---------+---------+---------+---------+
| | | | | | | | |
+---------+---------+---------+---------+---------+---------+---------+---------+
1 row in set (0.00 sec)
mysql> DROP TABLE bit_storage, string_storage;

● When a binary or hexadecimal character string with 0x00 is inserted into the
binary data type, GaussDB inserts part of the string and truncates the
characters following 0x00. MySQL can insert the entire string.

Example:
m_db=# CREATE TABLE blob_storage (
 A BLOB
) DISTRIBUTE BY REPLICATION;
m_db=# INSERT INTO blob_storage VALUES (0xBB00BB);
m_db=# SELECT hex(A) FROM blob_storage;
 hex

 BB
(1 row)
m_db=# DROP TABLE blob_storage;

mysql> CREATE TABLE blob_storage (
 A BLOB
);
mysql> INSERT INTO blob_storage VALUES (0xBB00BB);
mysql> SELECT hex(A) FROM blob_storage;
+--------+
| hex(a) |
+--------+
| BB00BB |
+--------+
1 row in set (0.01 sec)
mysql> DROP TABLE blob_storage;

● When a binary or hexadecimal string with 0x00 in the middle is inserted into
the string data type, GaussDB inserts part of the string and truncates the
characters following 0x00. In MySQL, the string cannot be inserted in strict
mode, and an empty string is inserted in loose mode.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

Example:
m_db=# CREATE TABLE text_storage (
 A TEXT
);
m_db=# INSERT INTO text_storage VALUES (b'101110110000000010111011');
m_db=# SELECT hex(A) FROM text_storage;
 hex

 BB
(1 row)
m_db=# DROP TABLE text_storage;

mysql> CREATE TABLE text_storage (
 A TEXT
);
mysql> INSERT INTO text_storage VALUES (b'101110110000000010111011');
ERROR 1366 (HY000): Incorrect string value: '\xBB\x00\xBB' for column 'A' at row 1
mysql> SELECT hex(A) FROM text_storage;
Empty set (0.00 sec)
mysql> SET SQL_MODE='';
mysql> INSERT INTO text_storage VALUES (b'101110110000000010111011');
mysql> SELECT hex(A) FROM text_storage;
+--------+
| hex(A) |
+--------+
| |
+--------+
1 row in set (0.01 sec)
mysql> DROP TABLE text_storage;

● The WHERE clause contains only common character strings. GaussDB returns
TRUE for 't', 'true', 'yes', 'y', and 'on', returns FALSE for 'no', 'f', 'off', 'false',
and 'n', and reports an error for other character strings. MySQL determines
whether to return TRUE or FALSE by converting a character string to an INT1
value.
Example:
m_db=# CREATE TABLE test_where (
 A INT
);
m_db=# INSERT INTO test_where VALUES (1);
m_db=# SELECT * FROM test_where WHERE '111';
ERROR: invalid input syntax for type boolean: "111"
LINE 1: select * from test_where where '111';
m_db=# DROP TABLE test_where;

mysql> CREATE TABLE test_where (
 A INT
);
mysql> INSERT INTO test_where VALUES (1);
mysql> SELECT * FROM test_where WHERE '111';
+------+
| a |
+------+
| 1 |
+------+
1 row in set (0.01 sec)
mysql> DROP TABLE test_where;

● When converting strings of YEAR type to integers, MySQL uses scientific
notation, but GaussDB does not support scientific notation and truncates the
strings.
Example:
m_db=# CREATE TABLE test_year (
 A YEAR
);
m_db=# SET sql_mode = '';

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

m_db=# INSERT INTO test_year VALUES ('2E3x');
WARNING: Data truncated for column.
LINE 1: insert into t1 values ('2E3x');
 ^
CONTEXT: referenced column: a
m_db=# SELECT * FROM test_year ORDER BY A;
 a

 2002
(1 row)
m_db=# DROP TABLE test_year;

mysql> CREATE TABLE test_year (
 A YEAR
);
mysql> INSERT INTO test_year VALUES ('2E3x');
mysql> SELECT * FROM test_year ORDER BY A;
+------+
| a |
+------+
| 2000 |
+------+
1 row in set (0.01 sec)
mysql> DROP TABLE test_year;

● When CREATE TABLE AS is used with UNION, GaussDB does not distinguish
the sequence of the left and right subnodes, but MySQL distinguishes the
sequence of the left and right subnodes. If the left and right subnodes are
exchanged, the results are different.
Example:
m_db=# CREATE TABLE test2(
 F1 FLOAT,
 I1 TINYINT,
 I2 SMALLINT,
 DTT1 DATETIME(6),
 DEC3 DECIMAL(32, 15),
 JS1 JSON,
 D2 DOUBLE,
 CH1 CHAR(255),
 D3 DOUBLE,
 TX1 TINYTEXT
);
m_db=# CREATE TABLE test1 SELECT DISTINCT concat((F1 + I1 - DTT1) * DEC3 % D2 / CH1) a from
test2 UNION ALL SELECT sqrt((DEC3 + DTT1 - JS1) * D3 / - TX1 % I2) FROM test2;
m_db=# DESC test1;
 Field | Type | Null | Key | Default | Extra
-------+------+------+-----+---------+-------
 a | text | YES | | |
(1 row)

m_db=# CREATE TABLE test3 SELECT DISTINCT sqrt((DEC3 + DTT1 - JS1) * D3 / - TX1 % I2) a from
test2 UNION ALL SELECT concat((F1 + I1 - DTT1) * DEC3 % D2 / CH1) FROM test2;
m_db=# DESC test3;
 Field | Type | Null | Key | Default | Extra
-------+------+------+-----+---------+-------
 a | text | YES | | |
(1 row)

m_db=# DROP TABLE test1, test2, test3;

mysql> CREATE TABLE test2(
 F1 FLOAT,
 I1 TINYINT,
 I2 SMALLINT,
 DTT1 DATETIME(6),
 DEC3 DECIMAL(32, 15),
 JS1 JSON,
 D2 DOUBLE,

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

 CH1 CHAR(255),
 D3 DOUBLE,
 TX1 TINYTEXT
);
mysql> CREATE TABLE test1 SELECT DISTINCT concat((F1 + I1 - DTT1) * DEC3 % D2 / CH1) a from
test2 UNION ALL SELECT sqrt((DEC3 + DTT1 - JS1) * D3 / - TX1 % I2) FROM test2;
mysql> DESC test1;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| a | varchar(53) | YES | | NULL | |
+-------+-------------+------+-----+---------+-------+
1 row in set (0.00 sec)
mysql> CREATE TABLE test3 SELECT DISTINCT sqrt((DEC3 + DTT1 - JS1) * D3 / - TX1 % I2) a from
test2 UNION ALL SELECT concat((F1 + I1 - DTT1) * DEC3 % D2 / CH1) FROM test2;
mysql> DESC test3;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| a | varchar(23) | YES | | NULL | |
+-------+-------------+------+-----+---------+-------+
1 row in set (0.00 sec)
mysql> DROP TABLE test1, test2, test3;

● In the function nesting scenarios in GaussDB, if aggregate functions (such as
max, min, sum, and avg) contain non-numeric characters in the string type,
the characters of this type are truncated or set to zeros during implicit
conversion to the numeric type. If operator comparison and HAVING
comparison are also involved, GaussDB converts types and generates alarms
in a unified manner, but MySQL may not generate alarms in the same
scenarios.
Example:
m_db=# SET m_format_behavior_compat_options= 'enable_precision_decimal';
SET
m_db=# SELECT max(c4) <> 0 FROM ((SELECT 2.22 id, '2006-04-27 20:19:02.132' c4)) tb_1;
WARNING: Truncated incorrect double value: '2006-04-27 20:19:02.132'
 ?column?

 t
(1 row)

m_db=# SELECT sum(c4) <> 0 FROM ((SELECT 2.22 id, '2006-04-27 20:19:02.132' c4)) tb_1;
WARNING: Truncated incorrect double value: '2006-04-27 20:19:02.132'
 ?column?

 t
(1 row)

m_db=# SELECT (SELECT max(c4) f5 FROM ((SELECT 2.22 id, '2006-04-27 20:19:08.132' c4) UNION
all (SELECT 2.22 id, '1985-09-01 07:59:59' c4)) tb_1
m_db(# WHERE exists (SELECT max(c4) FROM ((SELECT 2.22 id, '2006-04-27 20:19:08.132' c4)
UNION all (SELECT 2.22 id, '1985-09-01 07:59:59' c4)) tb_2)
m_db(# GROUP BY id WITH rollup HAVING f5<>0 LIMIT 0,1) + INTERVAL '33.22'
SECOND_MICROSECOND col5;
WARNING: Truncated incorrect double value: '2006-04-27 20:19:08.132'
CONTEXT: referenced column: col5
 col5

 2006-04-27 20:19:41.352000
(1 row)

m_db=# SELECT (SELECT sum(c4) f5 FROM ((SELECT 2.22 id, '2006-04-27 20:19:08.132' c4) UNION
all (SELECT 2.22 id, '1985-09-01 07:59:59' c4)) tb_1
m_db(# WHERE exists (SELECT sum(c4) FROM ((select 2.22 id, '2006-04-27 20:19:08.132' c4) UNION
all (select 2.22 id, '1985-09-01 07:59:59' c4)) tb_2)
m_db(# GROUP BY id WITH rollup HAVING f5<>0 LIMIT 0,1) + INTERVAL '33.22'
SECOND_MICROSECOND col5;

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

WARNING: Truncated incorrect double value: '2006-04-27 20:19:08.132'
CONTEXT: referenced column: col5
WARNING: Truncated incorrect double value: '1985-09-01 07:59:59'
CONTEXT: referenced column: col5
WARNING: Truncated incorrect double value: '2006-04-27 20:19:08.132'
CONTEXT: referenced column: col5
WARNING: Truncated incorrect double value: '2006-04-27 20:19:08.132'
CONTEXT: referenced column: col5
WARNING: Truncated incorrect double value: '1985-09-01 07:59:59'
CONTEXT: referenced column: col5
WARNING: Truncated incorrect double value: '1985-09-01 07:59:59'
CONTEXT: referenced column: col5
WARNING: Incorrect datetime value: '3991'
CONTEXT: referenced column: col5
 col5

(1 row)

mysql> SELECT max(c4) <> 0 FROM ((SELECT 2.22 id, '2006-04-27 20:19:02.132' c4)) tb_1;
+--------------+
| max(c4) <> 0 |
+--------------+
| 1 |
+--------------+
1 row in set (0.00 sec)

mysql> SELECT sum(c4) <> 0 FROM ((SELECT 2.22 id, '2006-04-27 20:19:02.132' c4)) tb_1;
+--------------+
| sum(c4) <> 0 |
+--------------+
| 1 |
+--------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW warnings;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1292 | Truncated incorrect DOUBLE value: '2006-04-27 20:19:02.132' |
+---------+------+---+
1 row in set (0.00 sec)

mysql> SELECT (SELECT max(c4) f5 FROM ((SELECT 2.22 id, '2006-04-27 20:19:08.132' c4) UNION all
(select 2.22 id, '1985-09-01 07:59:59' c4)) tb_1
 -> WHERE exists (SELECT max(c4) FROM ((SELECT 2.22 id, '2006-04-27 20:19:08.132' c4) UNION
all (SELECT 2.22 id, '1985-09-01 07:59:59' c4)) tb_2)
 -> GROUP BY id WITH rollup HAVING f5<>0 limit 0,1) + INTERVAL '33.22'
SECOND_MICROSECOND col5;
+----------------------------+
| col5 |
+----------------------------+
| 2006-04-27 20:19:41.352000 |
+----------------------------+
1 row in set (0.00 sec)

mysql> SELECT (SELECT sum(c4) f5 FROM ((SELECT 2.22 id, '2006-04-27 20:19:08.132' c4) UNION all
(SELECT 2.22 id, '1985-09-01 07:59:59' c4)) tb_1
 -> WHERE exists (SELECT sum(c4) FROM ((SELECT 2.22 id, '2006-04-27 20:19:08.132' c4) UNION
all (select 2.22 id, '1985-09-01 07:59:59' c4)) tb_2)
 -> GROUP BY id WITH rollup HAVING f5<>0 LIMIT 0,1) + INTERVAL '33.22'
SECOND_MICROSECOND col5;
+------+
| col5 |
+------+
| NULL |
+------+
1 row in set, 7 warnings (0.01 sec)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

mysql> SHOW warnings;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
Warning	1292	Truncated incorrect DOUBLE value: '2006-04-27 20:19:08.132'
Warning	1292	Truncated incorrect DOUBLE value: '1985-09-01 07:59:59'
Warning	1292	Truncated incorrect DOUBLE value: '2006-04-27 20:19:08.132'
Warning	1292	Truncated incorrect DOUBLE value: '2006-04-27 20:19:08.132'
Warning	1292	Truncated incorrect DOUBLE value: '1985-09-01 07:59:59'
Warning	1292	Truncated incorrect DOUBLE value: '1985-09-01 07:59:59'
Warning	1292	Incorrect datetime value: '3991'
+---------+------+---+
7 rows in set (0.00 sec)

Differences in Explicit Type Conversion
● In GaussDB, the conversion rules for each target type are used. In MySQL, C++

polymorphic overloading functions are used, causing inconsistent behavior in
nesting scenarios.
Example:
m_db=# SELECT CAST(GREATEST(date'2023-01-01','2023-01-01') AS SIGNED);
WARNING: Truncated incorrect INTEGER value: '2023-01-01'
CONTEXT: referenced column: cast
 cast

 2023
(1 row)

mysql> SELECT CAST(GREATEST(date'2023-01-01','2023-01-01') AS SIGNED);
+---+
| CAST(GREATEST(date'2023-01-01','2023-01-01') AS SIGNED) |
+---+
| 20230101 |
+---+

● In GaussDB, the BLOB, TINYBLOB, MEDIUMBLOB, LONGBLOB, BINARY,
VARBINARY, BIT, and YEAR types are explicitly converted to the JSON type.
The result is different from that in MySQL.
Example:
m_db=# CREATE TABLE test_blob (c1 BLOB, c2 TINYBLOB, c3 MEDIUMBLOB, c4 LONGBLOB, c5
BINARY(32), c6 VARBINARY(100), c7 BIT(64), c8 YEAR);
CREATE TABLE
m_db=# INSERT INTO test_blob VALUES('[1, "json"]', 'true', 'abc', '{"jsnid": 1, "tag": "ab"}', '[1, "json"]',
'{"jsnid": 1, "tag": "ab"}', '20', '2020');
INSERT 0 1
m_db=# SELECT CAST(c1 AS JSON), CAST(c2 AS JSON), CAST(c3 AS JSON), CAST(c4 AS JSON),
CAST(c5 AS JSON), CAST(c6 AS JSON), CAST(c7 AS JSON), CAST(c8 AS JSON) FROM test_blob;
 CAST | CAST | CAST | CAST | CAST |
CAST | CAST | CAST
-----------------+--------+-------+-----------------------------------+--------------------------------------
+-----------------------------------+------+--------
 "[1, \"json\"]" | "true" | "abc" | "{\"jsnid\": 1, \"tag\": \"ab\"}" | "[1, \"json\"] " | "{\"jsnid
\": 1, \"tag\": \"ab\"}" | "20" | "2020"
(1 row)

mysql> CREATE TABLE test_blob (c1 BLOB, c2 TINYBLOB, c3 MEDIUMBLOB, c4 LONGBLOB, c5
BINARY(32), c6 VARBINARY(100), c7 BIT(64), c8 YEAR);
Query OK, 0 rows affected (0.02 sec)
mysql> INSERT INTO test_blob VALUES('[1, "json"]', 'true', 'abc', '{"jsnid": 1, "tag": "ab"}', '[1, "json"]',
'{"jsnid": 1, "tag": "ab"}', '20', '2020');
Query OK, 1 row affected (0.00 sec)
mysql> SELECT CAST(c1 AS JSON), CAST(c2 AS JSON), CAST(c3 AS JSON), CAST(c4 AS JSON),
CAST(c5 AS JSON), CAST(c6 AS JSON), CAST(c7 AS JSON), CAST(c8 AS JSON) FROM test_blob;
+-----------------------------------+---------------------------+-----------------------
+---
+---

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

+--+------------------------------+--------------------------+
| CAST(c1 AS JSON) | CAST(c2 AS JSON) | CAST(c3 AS JSON) | CAST(c4 AS
JSON) | CAST(c5 AS JSON) | CAST(c6 AS
JSON) | CAST(c7 AS JSON) | CAST(c8 AS JSON) |
+-----------------------------------+---------------------------+-----------------------
+---
+---
+--+------------------------------+--------------------------+
| "base64:type252:WzEsICJqc29uIl0=" | "base64:type249:dHJ1ZQ==" | "base64:type250:YWJj" |
"base64:type251:eyJqc25pZCI6IDEsICJ0YWciOiAiYWIifQ==" |
"base64:type254:WzEsICJqc29uIl0AAAAAAAAAAAAAAAAAAAAAAAAAAAA=" |
"base64:type15:eyJqc25pZCI6IDEsICJ0YWciOiAiYWIifQ==" | "base64:type16:AAAAAAAAMjA=" |
"base64:type13:MjAyMA==" |
+-----------------------------------+---------------------------+-----------------------
+---
+---
+--+------------------------------+--------------------------+
1 row in set (0.00 sec)

● When the converted JSON data type is used for precision calculation, the
precision of GaussDB is the same as that of the JSON table, which is different
from that of MySQL 5.7 but the same as that of MySQL 8.0.
Example:
test=# drop table tt01;
DROP TABLE
test=# create table tt01 as select -cast('98.7654321' as json) as c1;
INSERT 0 1
test=# desc tt01;
 Field | Type | Null | Key | Default | Extra
-------+--------+------+-----+---------+-------
 c1 | double | YES | | |
(1 row)

test=# select * from tt01;
 c1

 -98.7654321
(1 row)

mysql> select version();
+------------------+
| version() |
+------------------+
| 5.7.44-debug-log |
+------------------+
1 row in set (0.00 sec)

mysql> drop table tt01;
Query OK, 0 rows affected (0.02 sec)

mysql> create table tt01 as select -cast('98.7654321' as json) as c1;
Query OK, 1 row affected (0.03 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> desc tt01;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| c1 | double(17,0) | YES | | NULL | |
+-------+--------------+------+-----+---------+-------+
1 row in set (0.00 sec)

mysql> select * from tt01;
+------+
| c1 |
+------+
| -99 |
+------+

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

1 row in set (0.00 sec)

mysql> select version();
+--------------+
| version() |
+--------------+
| 8.0.36-debug |
+--------------+
1 row in set (0.00 sec)

mysql> drop table tt01;
Query OK, 0 rows affected (0.05 sec)

mysql> create table tt01 as select -cast('98.7654321' as json) as c1;
Query OK, 1 row affected (0.12 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> desc tt01;
+-------+--------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------+------+-----+---------+-------+
| c1 | double | YES | | NULL | |
+-------+--------+------+-----+---------+-------+
1 row in set (0.01 sec)

mysql> select * from tt01;
+-------------+
| c1 |
+-------------+
| -98.7654321 |
+-------------+
1 row in set (0.00 sec)

Differences Between UNION, CASE, and Related Structures
● In MySQL, POLYGON+NULL, POINT+NULL, and POLYGON+POINT return the

GEOMETRY type. They are not involved in GaussDB and considered as errors.
● The SET and ENUM types are not supported currently and are considered as

errors.
● For UNION or UNION ALL that combines the JSON and binary types (BINARY,

VARBINARY, TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB), the
LONGBLOB type is returned in MySQL and the JSON type is returned in
GaussDB. In addition, binary types (BINARY, VARBINARY, TINYBLOB, BLOB,
MEDIUMBLOB, and LONGBLOB) can be implicitly converted to JSON.

● If m_format_behavior_compat_options is not set to
enable_precision_decimal, when the constant type is aggregated with other
types, the precision of the output type is the precision of other types. For
example, the precision of the result of "select "helloworld" union select p
from t;" is the precision of attribute p.

● If m_format_behavior_compat_options is not set to
enable_precision_decimal, when fixed-point constants and types without
precision constraints (non-string types such as int, bool, and year, and the
fixed-point type of aggregation result type) are aggregated, the precision
constraint is output based on the default precision 31 of fixed-point numbers.

● Differences in merge rules:
MySQL 5.7 has some improper type derivation. For example, the VARBINARY
type is derived from the BIT type and integer/YEAR type, and the UNSIGNED
type is derived from the UNSIGNED type and non-UNSIGNED type. In
addition, the aggregation results of CASE WHEN and UNION are different. If

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

the type derivation result is too small, data overflow may occur. The preceding
issues have been resolved in MySQL 8.0. Therefore, the merge rule in MySQL
8.0 prevails.

● In MySQL, BINARY and CHAR use different padding characters. BINARY is
padded with '\0', and CHAR is padded with spaces. In GaussDB, BINARY and
CHAR are padded with spaces.

● In the precision transfer scenario, when the CASE WHEN statement is used,
type conversion and precision recalculation are performed. As a result, trailing
zeros may be inconsistent with those in the output result of the CASE clause.
– More trailing zeros: The CASE node calculates the precision of the CASE

node based on the precision of the CASE clause. If the precision of the
THEN clause is lower than that of the CASE node, zeros are added to the
end of the CASE node.

– Less trailing zeros: When multiple layers of CASE WHEN are nested, only
the precision of the inner CASE is retained after the inner CASE performs
type conversion. The outer CASE cannot obtain the precision information
of the THEN clause. Therefore, the outer CASE performs type conversion
based on the precision calculated according to that of the inner CASE.
When the outer CASE clause is converted, if the precision of the inner
CASE clause is less than that of the THEN clause, there will be less
trailing zeros.

Example:
– -- Trailing zeros

-- More trailing zeros
m_db=# SELECT 15.6 AS result;
 result

 15.6
(1 row)

m_db=# SELECT CASE WHEN 1 < 2 THEN 15.6 ELSE 23.578 END AS result;
 result

 15.600
(1 row)

m_db=# SELECT greatest(12, 3.4, 15.6) AS result;
 result

 15.6
(1 row)

m_db=# SELECT CASE WHEN 1 < 2 THEN greatest(12, 3.4, 15.6) ELSE greatest(123.4, 23.578,
36) END AS result;
 result

 15.600
(1 row)

-- Less trailing zeros
m_db=# create table t1 as select (false/-timestamp '2008-12-31 23:59:59.678') as result;
INSERT 0 1
m_db=# desc t1;
 Field | Type | Null | Key | Default | Extra
--------+-------------+------+-----+---------+-------
 result | double(8,7) | YES | | |
(1 row)

m_db=# select (false/-timestamp '2008-12-31 23:59:59.678') as result;
 result

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

 -0.0000000
(1 row)

m_db=# create table t1 as select (case when 1<2 then false/-timestamp '2008-12-31
23:59:59.678' else 0016.11e3/'22.2' end) as result;
INSERT 0 1
m_db=# desc t1;
 Field | Type | Null | Key | Default | Extra
--------+--------+------+-----+---------+-------
 result | double | YES | | |
(1 row)

m_db=# select (case when 1<2 then false/-timestamp '2008-12-31 23:59:59.678' else
0016.11e3/'22.2' end) as result;
 result

 -0
(1 row)

m_db=# drop table t1;
DROP TABLE
m_db=# create table t1 as select (case when 1+1=2 then case when 1<2 then false/-timestamp
'2008-12-31 23:59:59.678' else 0016.11e3/'22.2' end else 'test' end) as result;
INSERT 0 1
m_db=# desc t1;
 Field | Type | Null | Key | Default | Extra
--------+-------------+------+-----+---------+-------
 result | varchar(23) | YES | | |
(1 row)

m_db=# select (case when 1+1=2 then case when 1<2 then false/-timestamp '2008-12-31
23:59:59.678' else 0016.11e3/'22.2' end else 'test' end) as result;
 result

 -0
(1 row)

– When the precision transfer parameter is enabled, set operations
(UNION, MINUS, EXCEPT, and INTERSECT) are used. If the fields queried
by the query statements involved in set operations are functions and
expressions instead of directly using fields in the table, if the data type of
the query result is INT or INT UNSIGNED, the return data type is
different. In MySQL, the returned data type is BIGINT or BIGINT
UNSIGNED. In GaussDB, the returned data type is INT/INT UNSIGNED.
-- Execution result in GaussDB
m_db=# SET
m_format_behavior_compat_options='select_column_name,enable_precision_decimal';
SET
m_db=# DROP TABLE IF EXISTS t1,t2,ctas1,ctas2;
DROP TABLE
m_db=# CREATE TABLE t1(a INT, b INT);
CREATE TABLE
m_db=# CREATE TABLE t2(c INT UNSIGNED, d INT UNSIGNED);
CREATE TABLE
m_db=# CREATE TABLE ctas1 AS (SELECT a, ABS(a) FROM t1) UNION (SELECT b, ABS(b) FROM
t1);
INSERT 0 0
m_db=# DESC ctas1;
 Field | Type | Null | Key | Default | Extra
--------+-------------+------+-----+---------+-------
 a | integer(11) | YES | | |
 ABS(a) | integer(11) | YES | | |
(2 rows)

m_db=# CREATE TABLE ctas2 AS (SELECT c, ABS(c) FROM t2) UNION (SELECT d, ABS(d) FROM
t2);
INSERT 0 0

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

m_db=# DESC ctas2;
 Field | Type | Null | Key | Default | Extra
--------+----------------------+------+-----+---------+-------
 c | integer(11) unsigned | YES | | |
 ABS(c) | integer(11) unsigned | YES | | |
(2 rows)

m_db=# DROP TABLE IF EXISTS t1,t2,ctas1,ctas2;
DROP TABLE

-- Execution result in MySQL
mysql> DROP TABLE IF EXISTS t1,t2,ctas1,ctas2;
Query OK, 0 rows affected, 4 warnings (0.00 sec)

mysql> CREATE TABLE t1(a INT, b INT);
Query OK, 0 rows affected (0.05 sec)

mysql> CREATE TABLE t2(c INT UNSIGNED, d INT UNSIGNED);
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TABLE ctas1 AS (SELECT a, ABS(a) FROM t1) UNION (SELECT b, ABS(b) FROM
t1);
Query OK, 0 rows affected (0.03 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> DESC ctas1;
+--------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+------------+------+-----+---------+-------+
| a | int(11) | YES | | NULL | |
| ABS(a) | bigint(20) | YES | | NULL | |
+--------+------------+------+-----+---------+-------+
2 rows in set (0.01 sec)

mysql> CREATE TABLE ctas2 AS (SELECT c, ABS(c) FROM t2) UNION (SELECT d, ABS(d) FROM
t2);
Query OK, 0 rows affected (0.05 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> DESC ctas2;
+--------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------------------+------+-----+---------+-------+
| c | int(11) unsigned | YES | | NULL | |
| ABS(c) | bigint(20) unsigned | YES | | NULL | |
+--------+---------------------+------+-----+---------+-------+
2 rows in set (0.00 sec)

mysql> DROP TABLE IF EXISTS t1,t2,ctas1,ctas2;
Query OK, 0 rows affected (0.07 sec)

– When precision transfer is enabled, the result in the CASE WHEN nesting
scenario is different from that in MySQL. In MySQL, a type can be directly
converted despite multiple layers. However, in GaussDB, the result
precision is determined and the type is converted layer by layer. As a
result, the decimal places or carry of the result may be inconsistent with
that of MySQL.
-- GaussDB:
m_db=# SET m_format_behavior_compat_options='enable_precision_decimal';
SET
m_db=# SELECT (CASE WHEN 1+1=3 THEN 'test' ELSE CASE WHEN 1>2 THEN '-1.5'%06.6600e1
ELSE -TIME '10:10:10.456'%2.2 END END) RES;
 res

 -1.8559999999974321
(1 row)

-- MySQL:

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

mysql> SELECT (CASE WHEN 1+1=3 THEN 'test' ELSE CASE WHEN 1>2 THEN '-1.5'%06.6600e1
ELSE -TIME '10:10:10.456'%2.2 END END) RES;
+--------+
| res |
+--------+
| -1.856 |
+--------+
1 row in set (0.00 sec)

– If operators of the int type (such as ~, &, |, <<, and >>) are nested in a
CASE WHEN statement and the return type of the CASE WHEN
statement is VARCHAR, truncation may occur in actual situations (you
can determine whether truncation will occur by analyzing the original
table data). In GaussDB, an error will be reported (a warning is reported
when SELECT is used for query and an error is reported when a table is
created). MySQL does not report an error. (If you want to CREATE TABLE
in GaussDB, you can set sql_mode to disable the strict mode.)
-- GaussDB:
m_db=# create table t_base (num_var numeric(20, 10), time_var time(6));
CREATE TABLE
m_db=# insert into t_base values ('-2514.1441000000','12:10:10.125000'),('-417.2147000000','
11:30:25.258000');
INSERT 0 2
m_db=# select (~(case when false then time_var else num_var end)) as res2 from t_base;
WARNING: Truncated incorrect INTEGER value: '-2514.1441000000'
CONTEXT: referenced column: res2
WARNING: Truncated incorrect INTEGER value: '-417.2147000000'
CONTEXT: referenced column: res2
 res2

 2513
 416
(2 rows)
m_db=# create table t1 as select (~(case when false then time_var else num_var end)) as res2
from t_base;
ERROR: Truncated incorrect INTEGER value: '-2514.1441000000'
CONTEXT: referenced column: res2
m_db=# set sql_mode="";
SET
m_db=# create table t1 as select (~(case when false then time_var else num_var end)) as res2
from t_base;
WARNING: Truncated incorrect INTEGER value: '-2514.1441000000'
CONTEXT: referenced column: res2
WARNING: Truncated incorrect INTEGER value: '-417.2147000000'
CONTEXT: referenced column: res2
INSERT 0 2
m_db=# desc t1;
 Field | Type | Null | Key | Default | Extra
-------+---------------------+------+-----+---------+-------
 res2 | bigint(21) unsigned | YES | | |
(1 row)

-- Mysql:
mysql> create table t_base (num_var numeric(20, 10), time_var time(6));
Query OK, 0 rows affected (0.01 sec)
mysql> insert into t_base values ('-2514.1441000000','12:10:10.125000'),('-417.2147000000','
11:30:25.258000');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0
mysql> select (~(case when false then time_var else num_var end)) as res2 from t_base;
+------+
| res2 |
+------+
| 2513 |
| 416 |
+------+
2 rows in set (0.00 sec)
mysql> create table t1 as select (~(case when false then time_var else num_var end)) as res2

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

from t_base;
Query OK, 2 rows affected (0.01 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> desc t1;
+-------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------------+------+-----+---------+-------+
| res2 | bigint(21) unsigned | YES | | NULL | |
+-------+---------------------+------+-----+---------+-------+
1 row in set (0.00 sec)

– When precision transfer is enabled, if constants are nested in CREATE
VIEW AS SELECT CASE WHEN and SELECT CASE WHEN statements
(including constant calculation and nesting functions with constants), the
values in GaussDB are the same. In MySQL, some precision may be lost in
SELECT CASE WHEN statements.
-- GaussDB:
m_db=# CREATE OR REPLACE VIEW test_view AS
m_db-# SELECT (CASE WHEN 1<2 THEN 3.33/4.46 ELSE 003.3630/002.2600 END) c1,(CASE
WHEN 1>2 THEN IFNULL(null,3.363/2.2) ELSE NULLIF(3.33/4.46,3.363/2.2) END) c2;
CREATE VIEW
m_db=# SELECT * FROM test_view;
 c1 | c2
------------+-----------
 0.74663677 | 0.7466368
(1 row)
m_db=# SELECT (CASE WHEN 1<2 THEN 3.33/4.46 ELSE 003.3630/002.2600 END) c1,(CASE
WHEN 1>2 THEN IFNULL(null,3.363/2.2) ELSE NULLIF(3.33/4.46,3.363/2.2) END) c2;
 c1 | c2
------------+-----------
 0.74663677 | 0.7466368
(1 row)

-- MySQL:
mysql> CREATE OR REPLACE VIEW test_view AS
 -> SELECT (CASE WHEN 1<2 THEN 3.33/4.46 ELSE 003.3630/002.2600 END) c1,(CASE WHEN
1>2 THEN IFNULL(null,3.363/2.2) ELSE NULLIF(3.33/4.46,3.363/2.2) END) c2;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT * FROM test_view;
+------------+-----------+
| c1 | c2 |
+------------+-----------+
| 0.74663677 | 0.7466368 |
+------------+-----------+
1 row in set (0.00 sec)
mysql> SELECT (CASE WHEN 1<2 THEN 3.33/4.46 ELSE 003.3630/002.2600 END) c1,(CASE
WHEN 1>2 THEN IFNULL(null,3.363/2.2) ELSE NULLIF(3.33/4.46,3.363/2.2) END) c2;
+----------+----------+
| c1 | c2 |
+----------+----------+
| 0.746637 | 0.746637 |
+----------+----------+
1 row in set (0.00 sec)

– When precision transfer is enabled, an M-compatible database supports
table creation using the UNION/CASE WHEN statement. However, due to
different architectures, the database does not ensure that all types of
created tables are the same as those of MySQL 8.0. The scenarios where
character strings and binary-related types are returned and some
function nesting scenarios in MySQL are different from those in GaussDB.
-- GaussDB:
m_db=# CREATE TABLE IF NOT EXISTS testcase (id int, col_text1 tinytext, col_text2 text,
col_blob1 tinyblob, col_blob2 blob, col_blob3 mediumblob, col_blob4 longblob);
CREATE TABLE
m_db=# CREATE TABLE t1 AS SELECT id,(CASE WHEN id=2 THEN col_text1 ELSE 'test' END)
f35, (CASE WHEN id=2 THEN col_text2 ELSE 'test' END) f36,(CASE WHEN id=2 THEN col_blob1

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

ELSE 'test' END) f41, (CASE WHEN id=2 THEN col_blob2 ELSE 'test' END) f42, (CASE WHEN
id=2 THEN col_blob3 ELSE 'test' END) f43, (CASE WHEN id=2 THEN col_blob4 ELSE 'test' END)
f44 FROM testcase;
INSERT 0 0
m_db=# DESC t1;
Field | Type | Null | Key | Default | Extra
-------+----------------+------+-----+---------+-------
id | integer(11) | YES | | |
f35 | varchar(255) | YES | | |
f36 | mediumtext | YES | | |
f41 | varbinary(255) | YES | | |
f42 | blob | YES | | |
f43 | mediumblob | YES | | |
f44 | longblob | YES | | |
(7 rows)

m_db=# CREATE TABLE IF NOT EXISTS testtext1 (col10 text);
CREATE TABLE
m_db=# CREATE TABLE IF NOT EXISTS testtext2 (col10 text);
CREATE TABLE
m_db=# CREATE TABLE testtext AS (select * from testtext1) UNION (select * from testtext2);
CREATE TABLE
m_db=# desc testtext;
m_db=#
 Field | Type | Null | Key | Default | Extra
-------+------+------+-----+---------+-------
 col10 | text | YES | | |
(1 row)

m_db=# create table testchar as select (select lcase(-6873.4354)) a, (select
sec_to_time(-485769.567)) b union all select (select bin(-58768923.21321)), (select
asin(-0.7237465));
INSERT 0 2
m_db=# desc testchar;
 Field | Type | Null | Key | Default | Extra
-------+-------------+------+-----+---------+-------
 a | text | YES | | |
 b | varchar(23) | YES | | |
(2 rows)

m_db=# CREATE TABLE test_func (col_text char(29));
CREATE TABLE
m_db=# CREATE TABLE test1 AS SELECT * FROM (SELECT
 GREATEST(2.22, col_text) f1, LEAST(2.22, col_text) f2,
 ADDDATE(col_text, INTERVAL '1.28.16.31' HOUR_MICROSECOND) f3,
 SUBDATE(col_text, INTERVAL '39.49.15' MINUTE_MICROSECOND) f4,
 DATE_SUB(col_text, INTERVAL '45' MICROSECOND) f5,
 DATE_ADD(col_text, INTERVAL '12.00.00.00.001' DAY_MICROSECOND) f6,
 ADDTIME(col_text, '8:20:20.3554') f7,
 SUBTIME(col_text, '8:20:20.3554') f8 from test_func) t1
UNION ALL
 SELECT * FROM (SELECT
 GREATEST(2.22, col_text) f1, LEAST(2.22, col_text) f2,
 ADDDATE(col_text, INTERVAL '1.28.16.31' HOUR_MICROSECOND) f3,
 SUBDATE(col_text, INTERVAL '39.49.15' MINUTE_MICROSECOND) f4,
 DATE_SUB(col_text, INTERVAL '45' MICROSECOND) f5,
 DATE_ADD(col_text, INTERVAL '12.00.00.00.001' DAY_MICROSECOND) f6,
 ADDTIME(col_text, '8:20:20.3554') f7,
 SUBTIME(col_text, '8:20:20.3554') f8 from test_func) t2;
INSERT 0 0
m_db=# DESC test1;
 Field | Type | Null | Key | Default | Extra
-------+-------------+------+-----+---------+-------
 f1 | double | YES | | |
 f2 | double | YES | | |
 f3 | varchar(29) | YES | | |
 f4 | varchar(29) | YES | | |
 f5 | varchar(29) | YES | | |
 f6 | varchar(29) | YES | | |

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

 f7 | varchar(29) | YES | | |
 f8 | varchar(29) | YES | | |
(8 rows)

-- MySQL:
mysql> CREATE TABLE IF NOT EXISTS testcase (id int, col_text1 tinytext, col_text2 text,
col_blob1 tinyblob, col_blob2 blob, col_blob3 mediumblob, col_blob4 longblob);
Query OK, 0 rows affected (0.01 sec)
mysql> CREATE TABLE t1 AS SELECT id,(CASE WHEN id=2 THEN col_text1 ELSE 'test' END) f35,
(CASE WHEN id=2 THEN col_text2 ELSE 'test' END) f36,(CASE WHEN id=2 THEN col_blob1 ELSE
'test' END) f41, (CASE WHEN id=2 THEN col_blob2 ELSE 'test' END) f42, (CASE WHEN id=2
THEN col_blob3 else 'test' END) f43, (CASE WHEN id=2 THEN col_blob4 ELSE 'test' END) f44
FROM testcase;
Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> DESC t1;
+-------+----------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+-------+
id	int	YES		NULL	
f35	longtext	YES		NULL	
f36	longtext	YES		NULL	
f41	longblob	YES		NULL	
f42	longblob	YES		NULL	
f43	longblob	YES		NULL	
f44	longblob	YES		NULL	
+-------+----------+------+-----+---------+-------+
7 rows in set (0.00 sec)

mysql> CREATE TABLE IF NOT EXISTS testtext1 (col10 text);
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE IF NOT EXISTS testtext2 (col10 text);
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE testtext AS (select * from testtext1) UNION (select * from testtext2);
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> desc testtext;
+-------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+------------+------+-----+---------+-------+
| col10 | mediumtext | YES | | NULL | |
+-------+------------+------+-----+---------+-------+
1 row in set (0.00 sec)

mysql> set sql_mode='';
Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> create table testchar as select (select lcase(-6873.4354)) a, (select
sec_to_time(-485769.567)) b union all select (select bin(-58768923.21321)), (select
asin(-0.7237465));
Query OK, 2 rows affected, 1 warning (0.02 sec)
Records: 2 Duplicates: 0 Warnings: 1

mysql> desc testchar;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| a | varchar(21) | YES | | NULL | |
| b | varchar(53) | YES | | NULL | |
+-------+-------------+------+-----+---------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE test_func (col_text char(29));
Query OK, 0 rows affected (0.02 sec)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

mysql> CREATE TABLE test1 AS SELECT * FROM (SELECT
 -> GREATEST(2.22, col_text) f1, LEAST(2.22, col_text) f2,
 -> ADDDATE(col_text, INTERVAL '1.28.16.31' HOUR_MICROSECOND) f3,
 -> SUBDATE(col_text, INTERVAL '39.49.15' MINUTE_MICROSECOND) f4,
 -> DATE_SUB(col_text, INTERVAL '45' MICROSECOND) f5,
 -> DATE_ADD(col_text, INTERVAL '12.00.00.00.001' DAY_MICROSECOND) f6,
 -> ADDTIME(col_text, '8:20:20.3554') f7,
 -> SUBTIME(col_text, '8:20:20.3554') f8 from test_func) t1
 -> UNION ALL
 -> SELECT * FROM (SELECT
 -> GREATEST(2.22, col_text) f1, LEAST(2.22, col_text) f2,
 -> ADDDATE(col_text, INTERVAL '1.28.16.31' HOUR_MICROSECOND) f3,
 -> SUBDATE(col_text, INTERVAL '39.49.15' MINUTE_MICROSECOND) f4,
 -> DATE_SUB(col_text, INTERVAL '45' MICROSECOND) f5,
 -> DATE_ADD(col_text, INTERVAL '12.00.00.00.001' DAY_MICROSECOND) f6,
 -> ADDTIME(col_text, '8:20:20.3554') f7,
 -> SUBTIME(col_text, '8:20:20.3554') f8 from test_func) t2;
 -> SUBTIME(col_text, '8:20:20.3554') f8 from test_func) t1
 -> UNION ALL
 -> SELECT * FROM (SELECT
 -> GREATEST(2.22, col_text) f1, LEAST(2.22, col_text) f2,
 -> ADDDATE(col_text, INTERVAL '1.28.16.31' HOUR_MICROSECOND) f3,
 -> SUBDATE(col_text, INTERVAL '39.49.15' MINUTE_MICROSECOND) f4,
 -> DATE_SUB(col_text, INTERVAL '45' MICROSECOND) f5,
 -> DATE_ADD(col_text, INTERVAL '12.00.00.00.001' DAY_MICROSECOND) f6,
 -> ADDTIME(col_text, '8:20:20.3554') f7,
 -> SUBTIME(col_text, '8:20:20.3554') f8 from test_func) t2;
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql>
mysql> DESC test1;
+-------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+------------+------+-----+---------+-------+
f1	binary(23)	YES		NULL	
f2	binary(23)	YES		NULL	
f3	char(29)	YES		NULL	
f4	char(29)	YES		NULL	
f5	char(29)	YES		NULL	
f6	char(29)	YES		NULL	
f7	char(29)	YES		NULL	
f8	char(29)	YES		NULL	
+-------+------------+------+-----+---------+-------+
8 rows in set (0.01 sec)

– In the scenario where precision transfer is enabled, for the CREATE TABLE
AS SELECT A % (CASE WHEN) statement, if A is of the DECIMAL type and
the result of CASE WHEN is of the date type (DATE, TIME, or DATETIME),
the two databases are different in the precision obtained by performing
the modulo operation (%). The precision obtained by GaussDB is the
same as that obtained by performing modulo operations on the decimal
type and date type.
-- GaussDB: (decimal % date type case) and (numeric%date) have the same precision, that is,
decimal(24,10).
m_db=# SET m_format_behavior_compat_options = 'enable_precision_decimal';
SET
m_db=# DROP TABLE IF EXISTS t1, t2;
DROP TABLE
m_db=# CREATE TABLE t1 (num_var numeric(20, 10), date_var date, time_var time(6), dt_var
datetime(6));
CREATE TABLE
m_db=# CREATE TABLE t2 AS SELECT num_var % (CASE WHEN true THEN dt_var ELSE dt_var
END) AS res1 FROM t1;
INSERT 0 0
m_db=# DESC t2;
 Field | Type | Null | Key | Default | Extra
-------+----------------+------+-----+---------+-------

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

 res1 | decimal(24,10) | YES | | |
(1 row)

m_db=# DROP TABLE IF EXISTS t1, t2;
DROP TABLE
m_db=# CREATE TABLE t1 (num_var numeric(20, 10), date_var date, time_var time(6), dt_var
datetime(6));
CREATE TABLE
m_db=# CREATE TABLE t2 AS SELECT num_var % dt_var AS RES1 from t1;
INSERT 0 0
m_db=# DESC t2;
 Field | Type | Null | Key | Default | Extra
-------+----------------+------+-----+---------+-------
 res1 | decimal(24,10) | YES | | |
(1 row)

-- MySQL 5.7: The precision is different. The precision of (decimal % date type case) is
decimal(65,10), and that of (numeric%date) is decimal(24,10).
mysql> DROP TABLE IF EXISTS t1, t2;
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE t1 (num_var numeric(20, 10), date_var date, time_var time(6), dt_var
datetime(6));
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE t2 AS SELECT num_var % (CASE WHEN true THEN dt_var ELSE dt_var
END) AS res1 FROM t1;
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> DESC t2;

+-------+----------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------+------+-----+---------+-------+
| res1 | decimal(65,10) | YES | | NULL | |
+-------+----------------+------+-----+---------+-------+
1 row in set (0.00 sec)

mysql> DROP TABLE IF EXISTS t1, t2;
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE t1 (num_var numeric(20, 10), date_var date, time_var time(6), dt_var
datetime(6));
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE t2 AS SELECT num_var % dt_var AS res1 FROM t1;
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> DESC t2;
+-------+----------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------+------+-----+---------+-------+
| res1 | decimal(24,10) | YES | | NULL | |
+-------+----------------+------+-----+---------+-------+
1 row in set (0.00 sec)

-- MySQL 8.0: The precision of (decimal % date type case) and (numeric%date) is
decimal(20,10).
mysql> DROP TABLE IF EXISTS t1, t2;
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE t1 (num_var numeric(20, 10), date_var date, time_var time(6), dt_var
datetime(6));
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE t2 AS SELECT num_var % (CASE WHEN true THEN dt_var ELSE dt_var
END) AS res1 FROM t1;

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> DESC t2;

+-------+----------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------+------+-----+---------+-------+
| res1 | decimal(20,10) | YES | | NULL | |
+-------+----------------+------+-----+---------+-------+
1 row in set (0.00 sec)

mysql> DROP TABLE IF EXISTS t1, t2;
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE t1 (num_var numeric(20, 10), date_var date, time_var time(6), dt_var
datetime(6));

Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE t2 AS SELECT num_var % dt_var AS res1 FROM t1;
Query OK, 0 rows affected (0.02 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> DESC t2;
+-------+----------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------------+------+-----+---------+-------+
| res1 | decimal(20,10) | YES | | NULL | |
+-------+----------------+------+-----+---------+-------+
1 row in set (0.00 sec)

– When precision transfer is enabled and UNION is used, if the query
statement participates in set calculation, the queried column is a
constant, and the query result data type is INT or DECIMAL, the returned
precision is different. In MySQL 5.7, the returned precision is related to
the left/right sequence of UNION. In MySQL 8.0 and GaussDB, they are
irrelevant.
-- GaussDB:
m_db=# CREATE TABLE t1 AS (SELECT -23.45 c2) UNION ALL (SELECT -45.678 c2);
INSERT 0 2
m_db=# DESC t1;
Field | Type | Null | Key | Default | Extra
-------+--------------+------+-----+---------+-------
c2 | decimal(5,3) | YES | | |
(1 row)
m_db=# CREATE TABLE t2 AS (SELECT -45.678 c2) UNION ALL (SELECT -23.45 c2);
INSERT 0 2
m_db=# DESC t2;
Field | Type | Null | Key | Default | Extra
-------+--------------+------+-----+---------+-------
c2 | decimal(5,3) | YES | | |
(1 row)

-- Mysql5.7:
mysql> CREATE TABLE t1 AS (SELECT -23.45 c2) UNION ALL (SELECT -45.678 c2);
Query OK, 2 rows affected (2.28 sec)
Records: 2 Duplicates: 0 Warnings: 0
mysql> DESC t1;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| c2 | decimal(6,3) | NO | | 0.000 | |
+-------+--------------+------+-----+---------+-------+
1 row in set (0.00 sec)
mysql> CREATE TABLE t2 AS (SELECT -45.678 c2) UNION ALL (SELECT -23.45 c2);
Query OK, 2 rows affected (2.22 sec)
Records: 2 Duplicates: 0 Warnings: 0

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

mysql> DESC t2;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| c2 | decimal(5,3) | NO | | 0.000 | |
+-------+--------------+------+-----+---------+-------+
1 row in set (0.00 sec)

-- Mysql8.0:
mysql> CREATE TABLE t1 AS (SELECT -23.45 c2) UNION ALL (SELECT -45.678 c2);
Query OK, 2 rows affected (0.02 sec)
Records: 2 Duplicates: 0 Warnings: 0
mysql> DESC t1;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| c2 | decimal(5,3) | NO | | 0.000 | |
+-------+--------------+------+-----+---------+-------+
1 row in set (0.03 sec)
mysql> CREATE TABLE t2 AS (SELECT -45.678 c2) UNION ALL (SELECT -23.45 c2);
Query OK, 2 rows affected (0.03 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> DESC t2;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| c2 | decimal(5,3) | NO | | 0.000 | |
+-------+--------------+------+-----+---------+-------+
1 row in set (0.02 sec)

Differences in Double Colon Conversion

In GaussDB, if you use double colons to convert input parameters of a function to
another type, the result may be unexpected. In MySQL, double colons do not take
effect.

Example:
m_db=# SELECT POW("12"::VARBINARY,"12"::VARBINARY);
ERROR: value out of range: overflow
CONTEXT: referenced column: pow

varbinary col
m_db=# CREATE TABLE test_varbinary (
 A VARBINARY(10)
);
m_db=# INSERT INTO test_varbinary VALUES ('12');
m_db=# SELECT POW(A, A) FROM test_varbinary;
 pow

 8916100448256
(1 row)

Differences in Decimal Types

In Create table... In the AS (select...) statement, if the decimal data type is used
and there are 0s in the prefix, 0s are ignored in M-compatible mode, and the
length calculation excludes 0s. In MySQL 5.7, the number of 0s in the prefix is
added to the total length. In MySQL 8.0, despite the numbers of 0s in the prefix,
only 1 is added to the total length.
m_db=# create table test as select 004.01 col1;
INSERT 0 1
m_db=# desc test;
 Field | Type | Null | Key | Default | Extra
-------+--------------+------+-----+---------+-------

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

 col1 | decimal(3,2) | YES | | |
(1 row)

mysql 5.7
mysql> create table test as select 004.01 col1;
Query OK, 1 row affected (0.02 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> desc test;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| col1 | decimal(5,2) | NO | | 0.00 | |
+-------+--------------+------+-----+---------+-------+
1 row in set (0.00 sec)

mysql 8.0
mysql> create table test as select 004.01 col1;
Query OK, 1 row affected (0.23 sec)
Records: 1 Duplicates: 0 Warnings: 0
mysql> desc test;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| col1 | decimal(4,2) | NO | | 0.00 | |
+-------+--------------+------+-----+---------+-------+
1 row in set (0.01 sec)

3.3 System Functions
GaussDB is compatible with most MySQL system functions, but there are some
differences. Only system functions in M-compatible mode can be used. System
functions of the original GaussDB cannot be used in case of unexpected results.
Currently, some system functions in GaussDB with the same names as those in
MySQL are not supported in M-compatible mode. For some of them, the message
indicating that they are not supported in M-compatible mode is displayed. Other
functions still retain the behaviors of the original GaussDB system functions. Do
not use these functions in case of unexpected results. The following table lists the
functions with the same name.

Table 3-9 Same-name functions for which a message indicating that they are not
supported in M-compatible mode is displayed

cot isEmpty last_insert_id mod octet_length

overlaps point radians regexp_instr regexp_like

regexp_replac
e

regexp_substr stddev_pop stddev_samp var_pop

var_samp variance - - -

Table 3-10 Same-name functions that retain the behaviors of the original
GaussDB system functions in M-compatible mode

ceil decode encode format instr

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

position round stddev row_num -

NO TE

● When the function regexp_instr, regexp_like, regexp_replace, or regexp_substr is used, if
the value of the m_format_dev_version parameter is 's2' or a value indicating a later
version and the value of the m_format_behavior_compat_options parameter contains
'enable_conflict_funcs', an error is reported, indicating that the behavior is not
supported in M-compatible mode. Other behaviors of these functions are the same as
those of functions with the same name in "SQL Reference > Functions and Operators >
Character Processing Functions and Operators" in Developer Guide.

● MySQL allows you to add user-defined functions to the database through the loadable
functions. When such functions are called, aliases can be specified in the input
parameters of the functions. GaussDB does not support loadable functions. When a
function is called, aliases cannot be specified for input parameters of the function.

● In M-compatible mode, system functions have the following common differences:
● The return value type of a system function is the same as that of MySQL only

when the node type of the input parameter is Var (table data) or Const (constant
input). In other cases (for example, the input parameter is a calculation expression
or function expression), the return value type may be different from that of
MySQL.

● In the table query scenario where LIMIT and OFFSET are used at the same time,
execution layer mechanisms of GaussDB and MySQL are different. GaussDB calls
functions line by line. Therefore, if an error occurs, it is reported and the execution
is interrupted. However, MySQL does not execute functions line by line. Therefore,
errors are not reported line by line and the execution is not interrupted, which may
lead to inconsistent returned results.

● Calling system functions by pg_catalog.func_name() is not recommended. If the
called function has input parameters in the format of syntax (such as SELECT
substr('demo' from 1 for 2)), an error may occur when the function is called.

3.3.1 Flow Control Functions

Table 3-11 Flow control functions

No. MySQL GaussDB Difference

1 IF() Supported
, with
difference
s.

If the first parameter is TRUE and
the third parameter expression
contains an implicit type conversion
error, or if the first parameter is
FALSE and the second parameter
expression contains an implicit type
conversion error, MySQL ignores the
error while GaussDB displays a type
conversion error.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

No. MySQL GaussDB Difference

2 IFNULL() Supported
, with
difference
s.

If the first parameter is not NULL
and the expression of the second
parameter contains an implicit type
conversion error, MySQL ignores the
error while GaussDB displays a type
conversion error.

3 NULLIF() Supported
, with
difference
s.

The return value type of a function
differs in MySQL 5.7 and MySQL 8.0.
Return types are compatible with
MySQL 8.0 because it is more
appropriate.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

3.3.2 Date and Time Functions
NO TE

The following describes the date and time functions in M-compatible GaussDB:
● The conditions where an input parameter of a function in "Functions and Operators" in

M-Compatibility Developer Guide can be a time expression are described as follows:
Time expressions (mainly including TEXT, DATETIME, DATE, and TIME) and the types
that can be implicitly converted to time expressions can be used as input parameters.
For example, a number can be implicitly converted to text and then used as a time
expression.
However, the effectiveness of such condition depends on the function. For example, the
DATEDIFF function is used to calculate only the date difference. Therefore, the time
expression is parsed as date. The TIMESTAMPDIFF function is used to calculate the time
difference based on UNIT. Therefore, the time expression is parsed as DATE, TIME, or
DATETIME based on UNIT.

● If a SELECT subquery contains only a time function and the input parameters of the
function contain columns in the table, when arithmetic operators (such as +, -, *, /, and
the negation operator) are used to calculate the result, the return values of the date
and time functions are truncated before the arithmetic operation.
m_db=# CREATE TABLE t1(int_var int);
CREATE TABLE
m_db=# INSERT INTO t1 VALUES(100);
INSERT 0 1
m_db=# SELECT (SELECT (1 * DATE_ADD('2020-10-20', interval int_var microsecond))) AS a FROM
t1; -- Truncate is not performed.
 a

 20201020000000
(1 row)

m_db=# SELECT (1 * (SELECT DATE_ADD('2020-10-20', interval int_var microsecond))) AS a FROM
t1; -- Truncation is performed.
 a

 2020
(1 row)

The m_db=# SELECT 1 * a FROM (SELECT (SELECT 1 * DATE_ADD('2020-10-20', interval int_var
microsecond)) AS a FROM t1) AS t2; -- Truncation is not performed.
 1 * a

 20201020000000
(1 row)

m_db=# SELECT 1 * a FROM (SELECT (SELECT DATE_ADD('2020-10-20', interval int_var
microsecond)) AS a FROM t1) AS t2; -- Truncation is performed.
 1 * a

 2020
(1 row)

● If an input parameter of a function is an invalid date:
Generally, the supported DATE and DATETIME ranges are the same as those in MySQL.
The value of DATE ranges from '0000-01-01' to '9999-12-31', and the value of
DATETIME ranges from '0000-01-01 00:00:00' to '9999-12-31 23:59:59'. Although the
DATE and DATETIME ranges supported by GaussDB are greater than those supported by
MySQL, out-of-bounds dates are still invalid.

Time functions may trigger alarms and return NULL unless the input parameters can be
properly converted into dates by CAST.

In the new framework, most date and time functions in GaussDB are the same as
those in MySQL. The following table lists the differences between some functions.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

Table 3-12 Date and time functions

N
o.

MySQL GaussD
B

Difference

1 ADDDATE() Support
ed

-

2 ADDTIME() Support
ed

-

3 CONVERT_TZ() Support
ed

-

4 CURDATE() Support
ed

-

5 CURRENT_DATE()/
CURRENT_DATE

Support
ed

-

6 CURRENT_TIME()/
CURRENT_TIME

Support
ed, with
differen
ces.

The integer value of a MySQL input
parameter is wrapped when it reaches
255 (maximum value of a one-byte
integer value), for example, SELECT
CURRENT_TIME(257) == SELECT
CURRENT_TIME(1).
GaussDB supports only valid values
ranging from 0 to 6. For other values,
an error is reported.

7 CURRENT_TIMESTAMP(
)/
CURRENT_TIMESTAMP

Support
ed, with
differen
ces.

The integer value of a MySQL input
parameter is wrapped when it reaches
255, for example, SELECT
CURRENT_TIMESTAMP(257) ==
SELECT CURRENT_TIMESTAMP(1).
GaussDB supports only valid values
ranging from 0 to 6. For other values,
an error is reported.

8 CURTIME() Support
ed, with
differen
ces.

The integer value of a MySQL input
parameter is wrapped when it reaches
255, for example, SELECT
CURTIME(257) == SELECT
CURTIME(1).
GaussDB supports only valid values
ranging from 0 to 6. For other values,
an error is reported.

9 DATE() Support
ed

-

10 DATE_ADD() Support
ed

-

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

N
o.

MySQL GaussD
B

Difference

11 DATE_FORMAT() Support
ed

-

12 DATE_SUB() Support
ed

-

13 DATEDIFF() Support
ed

-

14 DAY() Support
ed

-

15 DAYNAME() Support
ed

-

16 DAYOFMONTH() Support
ed

-

17 DAYOFWEEK() Support
ed

-

18 DAYOFYEAR() Support
ed

-

19 EXTRACT() Support
ed

-

20 FROM_DAYS() Support
ed

-

21 FROM_UNIXTIME() Support
ed

-

22 GET_FORMAT() Support
ed

-

23 HOUR() Support
ed

-

24 LAST_DAY() Support
ed

-

25 LOCALTIME()/
LOCALTIME

Support
ed, with
differen
ces.

The integer value of a MySQL input
parameter is wrapped when it reaches
255, for example, SELECT
LOCALTIME(257) == SELECT
LOCALTIME(1).
GaussDB supports only valid values
ranging from 0 to 6. For other values,
an error is reported.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

N
o.

MySQL GaussD
B

Difference

26 LOCALTIMESTAMP/
LOCALTIMESTAMP()

Support
ed, with
differen
ces.

The integer value of a MySQL input
parameter is wrapped when it reaches
255, for example, SELECT
LOCALTIMESTAMP(257) == SELECT
LOCALTIMESTAMP(1).
GaussDB supports only valid values
ranging from 0 to 6. For other values,
an error is reported.

27 MAKEDATE() Support
ed

-

28 MAKETIME() Support
ed

-

29 MICROSECOND() Support
ed

-

30 MINUTE() Support
ed

-

31 MONTH() Support
ed

-

32 MONTHNAME() Support
ed

-

33 NOW() Support
ed, with
differen
ces.

The integer value of a MySQL input
parameter is wrapped when it reaches
255, for example, SELECT
NOW(257)==SELECT NOW(1).
GaussDB supports only valid values
ranging from 0 to 6. For other values,
an error is reported.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

N
o.

MySQL GaussD
B

Difference

34 PERIOD_ADD() Support
ed, with
differen
ces.

1. Processing of integer overflow.
In MySQL 5.7, the maximum value
of an input parameter result of this
function is 2^32=4294967296.
When the accumulated value of the
month corresponding to period and
the month_number in the input
parameter or result exceed the
uint32 range, integer wraparound
occurs. This issue has been resolved
in MySQL 8.0. The performance of
this function in GaussDB is the
same as that in MySQL 8.0.

2. Performance of negative period.
In MySQL 5.7, a negative year is
parsed as an abnormal value
instead of an error. An error is
reported when a GaussDB input
parameter or result is negative (for
example, January 100 minus 10000
months). This issue has been
resolved in MySQL 8.0. The
performance of this function in
GaussDB is the same as that in
MySQL 8.0.

3. Signs that the month in period
exceeds the range.
In MySQL 5.7, if the month is
greater than 12 or equal to 0, for
example, 200013 or 199900, it will
be postponed correspondingly to a
later year or the 0th month will be
processed as December of the
previous year. This issue has been
resolved in MySQL 8.0. An error is
reported when the month is beyond
the range. The performance of this
function in GaussDB is the same as
that in MySQL 8.0.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

N
o.

MySQL GaussD
B

Difference

35 PERIOD_DIFF() Support
ed, with
differen
ces.

1. Behaviors of integer overflow
processing.
In MySQL 5.7, the maximum value
of an input parameter result of this
function is 2^32=4294967296.
When the accumulated value of the
month corresponding to period and
the month_number in the input
parameter or result exceed the
uint32 range, integer wraparound
occurs. This issue has been resolved
in MySQL 8.0. The performance of
this function in GaussDB is the
same as that in MySQL 8.0.

2. Signs of negative period.
In MySQL 5.7, a negative year is
parsed as an abnormal value
instead of an error. An error is
reported when a GaussDB input
parameter or result is negative (for
example, January 100 minus 10000
months). This issue has been
resolved in MySQL 8.0. An error is
reported when the month is beyond
the range. The performance of this
function in GaussDB is the same as
that in MySQL 8.0.

3. Signs that the month in period
exceeds the range.
In MySQL 5.7, if the month is
greater than 12 or equal to 0, for
example, 200013 or 199900, it will
be postponed correspondingly to a
later year or the 0th month will be
processed as December of the
previous year. This issue has been
resolved in MySQL 8.0. An error is
reported when the month is beyond
the range. The performance of this
function in GaussDB is the same as
that in MySQL 8.0.

36 QUARTER() Support
ed

-

37 SEC_TO_TIME() Support
ed

-

38 SECOND() Support
ed

-

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

N
o.

MySQL GaussD
B

Difference

39 STR_TO_DATE() Support
ed

Return value difference: In GaussDB,
text is returned. In MySQL, datetime or
date is returned.

40 SUBDATE() Support
ed

-

41 SUBTIME() Support
ed

-

42 SYSDATE() Support
ed, with
differen
ces.

The integer value of the MySQL input
parameter is wrapped when it reaches
255.
GaussDB does not support
wraparound.

43 TIME() Support
ed

-

44 TIME_FORMAT() Support
ed

-

45 TIME_TO_SEC() Support
ed

-

46 TIMEDIFF() Support
ed

-

47 TIMESTAMP() Support
ed

-

48 TIMESTAMPADD() Support
ed

-

49 TIMESTAMPDIFF() Support
ed

-

50 TO_DAYS() Support
ed

-

51 TO_SECONDS() Support
ed

In MySQL 5.7, the precision of this
function is incorrect.
When the precision transfer parameter
is enabled, the GaussDB precision
information is normal and consistent
with that in MySQL 8.0.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

N
o.

MySQL GaussD
B

Difference

52 UNIX_TIMESTAMP() Support
ed

MySQL determines whether to return
a fixed-point value or an integer based
on whether an input parameter
contains decimal places. When
operators or functions are nested in
the input parameter, GaussDB may
return a value of the type different
from that in MySQL. If the inner node
returns a value of the fixed-point,
floating-point, string, or time type
(excluding the DATE type), MySQL
may return an integer, and GaussDB
returns a fixed-point value.

53 UTC_DATE() Support
ed

-

54 UTC_TIME() Support
ed, with
differen
ces.

The integer value of a MySQL input
parameter is wrapped when it reaches
255. GaussDB supports only valid
values ranging from 0 to 6. For other
values, an error is reported.

55 UTC_TIMESTAMP() Support
ed, with
differen
ces.

The integer value of a MySQL input
parameter is wrapped when it reaches
255. GaussDB supports only valid
values ranging from 0 to 6. For other
values, an error is reported.

56 WEEK() Support
ed

-

57 WEEKDAY() Support
ed

-

58 WEEKOFYEAR() Support
ed

-

59 YEAR() Support
ed

-

60 YEARWEEK() Support
ed

-

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

3.3.3 String Functions

Table 3-13 String functions

N
o.

MySQL GaussDB Difference

1 ASCII() Supported. -

2 BIT_LENGTH() Supported. -

3 CHAR_LENGTH(
)

Supported,
with
differences.

In GaussDB, if the character set is
SQL_ASCII, CHAR_LENGTH() returns the
number of bytes instead of characters.

4 CHARACTER_LE
NGTH()

Supported,
with
differences.

In GaussDB, if the character set is
SQL_ASCII, CHARACTER_LENGTH()
returns the number of bytes instead of
characters.

5 CONCAT() Supported. For binary return values, MySQL offers
various options (including BINARY,
VARBINARY, and BLOB), while GaussDB
offers only one—LONGBLOB. For non-
binary return values, MySQL offers
various options (including CHAR,
VARCHAR, and TEXT), while GaussDB
only offers TEXT.

6 CONCAT_WS() Supported. For binary return values, MySQL offers
various options (including BINARY,
VARBINARY, and BLOB), while GaussDB
offers only one—LONGBLOB. For non-
binary return values, MySQL offers
various options (including CHAR,
VARCHAR, and TEXT), while GaussDB
only offers TEXT.

7 HEX() Supported. -

8 LENGTH() Supported. -

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

N
o.

MySQL GaussDB Difference

9 LPAD() Supported,
with
differences.

● The default maximum padding length
in MySQL is 1398101, and that in
GaussDB is 1048576. The maximum
padding length depends on the
character set. For example, if the
character set is GBK, the default
maximum padding length in GaussDB
is 2097152.

● If the database character set is
SQL_ASCII, unexpected results may
occur.

● For binary return values, MySQL offers
various options (including BINARY,
VARBINARY, and BLOB), while
GaussDB offers only one—LONGBLOB.
For non-binary return values, MySQL
offers various options (including
CHAR, VARCHAR, and TEXT), while
GaussDB only offers TEXT.

10 MD5() Supported,
with
differences.

When the length of the inserted string of
the BINARY type is less than the target
length, the padding characters in
GaussDB are different from those in
MySQL. Therefore, when the input
parameter is of the BINARY type, the
function result in GaussDB is different
from that in MySQL.

11 RANDOM_BYTE
S()

Supported. Both GaussDB and MySQL use OpenSSL
to generate random character strings.
GaussDB uses OpenSSL 3.x.x to generate
random character strings. Compared with
MySQL using OpenSSL 1.x.x, the
performance in GaussDB may deteriorate.

12 REPEAT() Supported. For binary return values, MySQL offers
various options (including BINARY,
VARBINARY, and BLOB), while GaussDB
offers only one—LONGBLOB. For non-
binary return values, MySQL offers
various options (including CHAR,
VARCHAR, and TEXT), while GaussDB
only offers TEXT.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

N
o.

MySQL GaussDB Difference

13 REPLACE() Supported. ● For binary return values, MySQL offers
various options (including BINARY,
VARBINARY, and BLOB), while
GaussDB offers only one—LONGBLOB.
For non-binary return values, MySQL
offers various options (including
CHAR, VARCHAR, and TEXT), while
GaussDB only offers TEXT.

● If the third input parameter is null and
the string length of the second input
parameter is not 0, GaussDB returns
NULL and MySQL may return the
characters of the first parameter.

14 RPAD() Supported,
with
differences.

● The default maximum padding length
in MySQL is 1398101, and that in
GaussDB is 1048576. The maximum
padding length depends on the
character set. For example, if the
character set is GBK, the default
maximum padding length in GaussDB
is 2097152.

● If the database character set is
SQL_ASCII, unexpected results may
occur.

● For binary return values, MySQL offers
various options (including BINARY,
VARBINARY, and BLOB), while
GaussDB offers only one—LONGBLOB.
For non-binary return values, MySQL
offers various options (including
CHAR, VARCHAR, and TEXT), while
GaussDB only offers TEXT.

15 SHA()/SHA1() Supported. -

16 SHA2() Supported. -

17 SPACE() Supported. -

18 STRCMP() Supported,
with
differences.

If the database character set is SQL_ASCII,
unexpected results may occur.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

N
o.

MySQL GaussDB Difference

19 FIND_IN_SET() Supported,
with
differences.

When characters are specified to be
encoded in SQL_ASCII for the database,
the server parses byte values 0 to 127
according to the ASCII standard, and byte
values 128 to 255 cannot be parsed. If
the input and output of the function
contain any non-ASCII characters, the
database cannot help you convert or
verify them.
For binary return values, MySQL offers
various options (including BINARY,
VARBINARY, and BLOB), while GaussDB
offers only one—LONGBLOB. For non-
binary return values, MySQL offers
various options (including CHAR,
VARCHAR, and TEXT), while GaussDB
only offers TEXT.
The SUBSTRING function is different from
that in MySQL when the first input
parameter is nested.
● When the collation returned by the

first input parameter node is BINARY,
MySQL may still use different collation
logic (depending on the nested
function), but GaussDB processes
functions based on BINARY collation.
As a result, the length of truncated
bytes is different.

The differences in SUBSTRING_INDEX
function are as follows:
● When the third input parameter is a

negative number, the comparison logic
of MySQL is different from that of
GaussDB, which may lead to different
results.

● When the third input parameter is a
positive number, wraparound may
occur because MySQL 5.7 stores data
in int32 format, leading to an incorrect
result. In MySQL 8.0, int64 is used for
storage, which rectifies the problem.
Therefore, GaussDB follows the setting
of MySQL 8.0. However, when the
input parameter value exceeds 2^63 –
1, wraparound also occurs. As a result,
the obtained value of the third
parameter may be a negative number,
and the results are different.

20 LCASE()

21 LEFT()

22 LOWER()

23 LTRIM()

24 REVERSE()

25 RIGHT()

26 RTRIM()

27 SUBSTR()

28 SUBSTRING()

29 SUBSTRING_IN
DEX()

30 TRIM()

31 UCASE()

32 UPPER()

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

N
o.

MySQL GaussDB Difference

33 UNHEX() Supported. The return value type in MySQL is
BINARY, VARBINARY, BLOB,
MEDIUMBLOB, or LONGBLOB, while the
return value type in GaussDB is fixed to
LONGBLOB.

34 FIELD() Supported. -

35 COMPRESS() Supported,
with
differences.

In MySQL, the return value type may be
VARBINARY, BLOB, or LONGBLOB. In
GaussDB, the return value type is
LONGBLOB.

36 UNCOMPRESS() Supported. -

37 UNCOMPRESS_
LENGTH()

Supported. -

38 EXPORT_SET() Supported. -

39 POSITION() Supported. -

40 LOCATE() Supported. -

41 CHAR() Supported,
with
differences.

● When the CHAR function is used to
specify a character set, if the
transcoding fails, GaussDB reports an
error, and MySQL reports a WARNING
and returns NULL.

● In MySQL, if the parameter value is
the 0th to 31st or 127th code in the
ASCII table, the returned result is
invisible. GaussDB returns the value in
hexadecimal format, such as \x01 and
\x02.

● In MySQL, the number of input
parameters of the CHAR function is
not limited. In GaussDB, the number of
input parameters of the function
cannot exceed 8192.

42 ELT() Supported,
with
differences.

In MySQL, the number of input
parameters of the ELT function is not
limited. In GaussDB, the number of input
parameters of the function cannot exceed
8192.

43 FORMAT() Supported. -

44 BIN() Supported. -

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

N
o.

MySQL GaussDB Difference

45 MAKE_SET() Supported. In MySQL 5.7, if the first parameter
selected by the MAKE_SET function is of
the integer, floating-point, or fixed-point
type and the returned result contains
non-ASCII characters, garbled characters
may be displayed. In GaussDB, the
displayed result is normal, which is the
same as that in MySQL 8.0.

46 TO_BASE64() Supported. -

47 FROM_BASE64(
)

Supported. -

48 ORD() Supported. -

49 MID() Supported. -

50 QUOTE() Supported,
with
differences.

1. In M-compatible mode, enable MySQL
escape.
SET
m_format_behavior_compat_options=enable_escap
e_string;

2. An input parameter string contains
"\0" cannot be entered, because it is
not supported by the character set in
GaussDB. It is the escape character
instead of the function itself that
makes the function different in
GaussDB and MySQL.

3. In GaussDB, a maximum of 1 GB data
can be transferred. The maximum
length of the str input parameter is
536870908, and the maximum size of
the result string returned by the
function is 1 GB.

4. For characters that are not padded, if
the input parameter is of the BINARY
type with a fixed length, null
characters \0 are padded in MySQL
and spaces are padded in GaussDB by
default.

5. In MySQL, QUOTE() processes null
characters. In GaussDB, QUOTE()
cannot process null characters.

51 INSERT() Supported. -

52 INSTR() Supported. -

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

3.3.4 Forced Conversion Functions

Table 3-14 Forced conversion functions

No. MySQL GaussDB Difference

1 CAST() Supported ● Due to different function execution
mechanisms, flags cannot be
transferred to the inner function.
When other functions (such as
greatest and least) are nested in the
cast function, the inner function
returns a value less than 1. The result
is different from that in MySQL.
--GaussDB:
m_db=# SELECT cast(least(1.23, 1.23, 0.23400)
AS date);
WARNING: Incorrect datetime value: '0.23400'
CONTEXT: referenced column: cast
 cast

(1 row)
--MySQL 5.7:
mysql> SELECT cast(least(1.23, 1.23, 0.23400) AS
date);
+--+
| cast(least(1.23, 1.23, 0.23400) as date) |
+--+
| 0000-00-00 |
+--+
1 row in set (0.00 sec)

● In GaussDB, CAST(expr AS CHAR[(N)]
charset_info or CAST(expr AS
NCHAR[(N)]) cannot be used to
convert character sets.

● In GaussDB, you can use CAST(expr
AS FLOAT[(p)]) or CAST(expr AS
DOUBLE) to convert an expression to
the one of the floating-point type.
MySQL 5.7 does not support this
conversion.

● In the CAST nested subquery scenario,
if the subquery statement returns the
FLOAT type, an accurate value is
returned in GaussDB while a distorted
value is returned in MySQL 5.7. The
same rule applies to the BINARY
function implemented using CAST.
GaussDB
m_db=# CREATE TABLE sub_query_table (myfloat
float);
CREATE TABLE
m_db=# INSERT INTO sub_query_table (myfloat)
VALUES (1.23);
INSERT 0 1
m_db=# SELECT BINARY (select MyFloat from
sub_query_table) from sub_query_table;
 binary

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

No. MySQL GaussDB Difference

 1.23
(1 row)
m_db=# SELECT CAST((select MyFloat from
sub_query_table) AS char);
 cast

 1.23
(1 row)
Mysql 5.7
mysql> CREATE TABLE sub_query_table (myfloat
float);
Query OK, 0 rows affected (0.02 sec)
mysql> INSERT INTO sub_query_table (myfloat)
VALUES (1.23);
Query OK, 1 row affected (0.00 sec)
mysql> SELECT BINARY (select MyFloat from
sub_query_table) from sub_query_table;
+---+
| BINARY (select MyFloat from sub_query_table) |
+---+
| 1.2300000190734863 |
+---+
1 row in set (0.00 sec)
mysql> SELECT CAST((select MyFloat from
sub_query_table) AS char);
+--+
| CAST((select MyFloat from sub_query_table)
AS char) |
+--+
| 1.2300000190734863 |
+--+
1 row in set (0.00 sec)

2 CONVERT() Supported ● In GaussDB, CONVERT(expr,
CHAR[(N)] charset_info or CAST(expr,
NCHAR[(N)]) cannot be used to
convert character sets.

● In GaussDB, you can use
CONVERT(expr, FLOAT[(p)]) or
CONVERT(expr, DOUBLE) to convert
an expression to the one of the
floating-point type. MySQL 5.7 does
not support this conversion.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

3.3.5 Encryption Functions

Table 3-15 Encryption functions

No. MySQL GaussDB Difference

1 AES_DECRY
PT()

Supported
.

1. GaussDB does not support ECB mode, which
is an insecure encryption mode, but uses
CBC mode by default.

2. When characters are specified to be
encoded in SQL_ASCII for GaussDB, the
server parses byte values 0 to 127 according
to the ASCII standard, and byte values 128
to 255 cannot be parsed. If the input and
output of the function contain any non-
ASCII characters, the database cannot help
you convert or verify them.

3. The return value type in MySQL is BINARY,
VARBINARY, BLOB, MEDIUMBLOB, or
LONGBLOB, while the return value type in
GaussDB is fixed to LONGBLOB.

4. The GUC parameter
block_encryption_mode cannot be set to a
number.

2 AES_ENCRY
PT()

Supported
.

3 PASSWOR
D()

Supported
, with
difference
s.

● In MySQL, the GUC parameter
old_passwords can be used to control how
the hash generates passwords.
– The default value of old_passwords is 0.
– If old_passwords is set to 0, MySQL 4.1

native hashing is used for encryption.
– If old_passwords is set to 2, SHA-256

hashing is used for encryption.
● The GUC parameter old_passwords is not

supported in GaussDB. The behavior of the
password function is only consistent with
the default behavior (that is, when the
value of old_passwords is 0).

● When the length of the inserted string of
the BINARY type is less than the target
length, the padding characters in GaussDB
are different from those in MySQL.
Therefore, when the input parameter is of
the BINARY type, the function result in
GaussDB is different from that in MySQL.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

3.3.6 Comparison Functions

Table 3-16 Comparison functions

No. MySQL GaussDB Difference

1 COALESCE(
)

Supported,
with
differences
.

In the union distinct scenario, the
precision of the return value is different
from that in MySQL.
If there is an implicit type conversion
error in the subsequent parameter
expression of the first parameter that is
not NULL, MySQL ignores the error while
GaussDB displays a type conversion error.
When the parameter is a MIN or MAX
function, the return value type is different
from that in MySQL.

2 INTERVAL() Supported. -

3 GREATEST(
)

Supported,
with
differences
.

If the return value type in MySQL is
binary string (such as BINARY,
VARBINARY, or BLOB), the return value
type in GaussDB is LONGBLOB. If the
return value type in MySQL is non-binary
string (such as CHAR, VARCHAR, or
TEXT), the return value type in GaussDB
is TEXT.
If the input parameter of the function
contains NULL and the function is called
after the WHERE keyword, the returned
result is inconsistent with that of MySQL
5.7. This problem lies in MySQL 5.7. Since
MySQL 8.0 has resolved this problem,
GaussDB are consistent with MySQL 8.0.

4 LEAST() Supported,
with
differences
.

If the return value type in MySQL is
binary string (such as BINARY,
VARBINARY, or BLOB), the return value
type in GaussDB is LONGBLOB. If the
return value type in MySQL is non-binary
string (such as CHAR, VARCHAR, or
TEXT), the return value type in GaussDB
is TEXT.
If the input parameter of the function
contains NULL and the function is called
after the WHERE keyword, the returned
result is inconsistent with that of MySQL
5.7. This problem lies in MySQL 5.7. Since
MySQL 8.0 has resolved this problem,
GaussDB are consistent with MySQL 8.0.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

No. MySQL GaussDB Difference

5 ISNULL() Supported,
with
differences
.

● The return value type of a function
differs in MySQL 5.7 and MySQL 8.0.
Return types are compatible with
MySQL 8.0 because its behavior is
more appropriate.

● When some aggregate functions are
nested, the returned results in MySQL
5.7 and MySQL 8.0 are different in
some scenarios. Return values are
compatible with MySQL 8.0 because its
behavior is more appropriate.
m_db=# SELECT isnull(avg(1.23));
?column?

f
(1 row)

m_db=# SELECT isnull(group_concat(1.23));
?column?

f
(1 row)

m_db=# SELECT isnull(max('1.23'));
?column?

f
(1 row)

m_db=# SELECT isnull(min(1/2));
?column?

f
(1 row)

m_db=# SELECT isnull(std(3.14159 * 1.2345));
?column?

f
(1 row)

m_db=# SELECT isnull(sum('0.23400'));
?column?

f
(1 row)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

3.3.7 Aggregate Functions

Table 3-17 Aggregate functions

No. MySQL GaussDB Difference

1 AVG() Supported,
with
differences.

● In GaussDB, if DISTINCT is specified and
the SQL statement contains a GROUP BY
clause, the result sequence is not
guaranteed.

● In GaussDB, if the columns in expr are of
the BIT, BOOL, or integer type and the
sum of all rows exceeds the range of
BIGINT, overflow occurs, reversing
integers.

● In GaussDB, the behavior is different
when the input parameter of the AVG
function is of the TEXT or BLOB type.
– In MySQL 5.7, the return value type of

AVG(TEXT/BLOB) is MEDIUMTEXT. In
MySQL 8.0, the return value type of
AVG(TEXT/BLOB) is DOUBLE.

– In GaussDB, the return value type of
AVG(TEXT/BLOB) is the same as that in
MySQL 8.0.

2 BIT_AND() Supported. When the input parameter of the BIT_AND
function is NULL and the BIT_AND function
is nested by other functions, the result is –1
in MySQL 5.7 and NULL in MySQL 8.0. In
GaussDB, the function nesting is the same as
that in MySQL 8.0.
-- GaussDB:
m_db=# SELECT acos(bit_and(null));
 acos

(1 row)
-- MySQL 5.7:
mysql> SELECT acos(bit_and(null));
+---------------------+
| acos(bit_and(null)) |
+---------------------+
| 3.141592653589793 |
+---------------------+
1 row in set (0.03 sec)

-- MySQL8.0
mysql> SELECT acos(bit_and(null));
+---------------------+
| acos(bit_and(null)) |
+---------------------+
| NULL |
+---------------------+
1 row in set (0.01 sec)

3 BIT_OR() Supported. -

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

No. MySQL GaussDB Difference

4 BIT_XOR() Supported. -

5 COUNT() Supported,
with
differences.

In GaussDB, if DISTINCT is specified and the
SQL statement contains a GROUP BY clause,
the result sequence is not guaranteed.
GaussDB supports the count(tablename.*)
syntax, but MySQL does not.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

No. MySQL GaussDB Difference

6 GROUP_CO
NCAT()

Supported,
with
differences.

● In GaussDB, if DISTINCT is specified and
the SQL statement contains a GROUP BY
clause, the result sequence is not
guaranteed.

● In GaussDB, if the parameters in
GROUP_CONCAT contain both the
DISTINCT and ORDER BY syntaxes, all
expressions following ORDER BY must be
in the DISTINCT expression.

● In GaussDB, GROUP_CONCAT(... ORDER
BY Number) does not indicate the
sequence of the parameter. The number is
only a constant expression, which is
equivalent to no sorting.

● In GaussDB, the group_concat_max_len
parameter is used to limit the maximum
return length of GROUP_CONCAT. If the
return length exceeds the maximum, the
length is truncated. Currently, the
maximum length that can be returned is
1073741823, which is smaller than that in
MySQL.

● When the default UTF-8 character set is
used, the maximum number of bytes of
UTF-8 character set in GaussDB is
different from that in MySQL. As a result,
the table structure in GaussDB is different
from that in MySQL.
-- GaussDB:
m_db=# SET
m_format_behavior_compat_options='enable_precision_
decimal';
SET
m_db=# CREATE TABLE t1 AS SELECT * FROM (SELECT
case WHEN 1 < 2 THEN group_concat(1.23, 3.24) ELSE
12.34 END v1) c1;
INSERT 0 1
m_db=# DESC t1;
 Field | Type | Null | Key | Default | Extra
-------+--------------+------+-----+---------+-------
 v1 | varchar(256) | YES | | |
(1 row)
-- MySQL 5.7:
mysql> CREATE TABLE t1 AS SELECT * FROM (SELECT
case WHEN 1 < 2 THEN group_concat(1.23, 3.24) ELSE
12.34 END v1) c1;
Query OK, 1 row affected (0.01 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESC t1;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| v1 | varchar(341) | YES | | NULL | |
+-------+--------------+------+-----+---------+-------+
1 row in set (0.00 sec)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

No. MySQL GaussDB Difference

● When the GROUP_CONCAT function is
used as the input parameter of the
NULLIF function, the behavior in nested
scenarios is different. In MySQL 5.7, no
matter whether the GROUP_CONCAT
function is nested in the input parameters
of NULLIF, the values of GROUP_CONCAT
in both occasions are regarded as the
same and NULL is returned. In MySQL 8.0,
the values are regarded as unequal due to
precision differences. In GaussDB, this
function is nested in the same way as that
in MySQL 8.0.
-- GaussDB:
m_db=# SELECT nullif(group_concat(1/7), 1/7);
 nullif

 0.1429
(1 row)
-- MySQL 5.7:
mysql> SELECT nullif(group_concat(1/7), 1/7);
+--------------------------------+
| nullif(group_concat(1/7), 1/7) |
+--------------------------------+
| NULL |
+--------------------------------+
1 row in set (0.00 sec)
-- MySQL 8.0:
mysql> SELECT nullif(group_concat(1/7), 1/7);
+--------------------------------+
| nullif(group_concat(1/7), 1/7) |
+--------------------------------+
| 0.1429 |
+--------------------------------+
1 row in set (0.00 sec)

7 MAX() Supported,
with
differences.

In GaussDB, if DISTINCT is specified and the
SQL statement contains a GROUP BY clause,
the result sequence is not guaranteed. When
the parameter is not a table field, the return
value type of the MAX function is different
from that of MySQL 5.7.
When precision transfer is enabled, the MAX
function is nested with the time interval
calculation of the time, date, datetime, or
timestamp type. The return value and return
type are the same as those in MySQL 8.0.
When precision transfer is enabled, the
return value and return type of the MAX and
INTERVAL functions are the same as those of
MySQL 8.0.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

No. MySQL GaussDB Difference

8 MIN() Supported,
with
differences.

In GaussDB, if DISTINCT is specified and the
SQL statement contains a GROUP BY clause,
the result sequence is not guaranteed. When
the parameter is not a table field, the return
value type of the MIN function is different
from that of MySQL 5.7.
When precision transfer is enabled, the MIN
function is nested with the time interval
calculation of the time, date, datetime, and
timestamp types. The return value and return
type are the same as those in MySQL 8.0.
When precision transfer is enabled, the
return value and return type of the MIN and
INTERVAL functions are the same as those in
MySQL 8.0.

9 SUM() Supported,
with
differences.

● In GaussDB, if DISTINCT is specified and
the SQL statement contains a GROUP BY
clause, the result sequence is not
guaranteed.

● In GaussDB, if the columns in expr are of
the BIT, BOOL, or integer type and the
sum of all rows exceeds the range of
BIGINT, overflow occurs, reversing
integers.

10 STD() Supported. -

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

No. MySQL GaussDB Difference

11 Aggregate
Functions

Supported,
with
differences.

● If the ORDER BY statement contains an
aggregate function, no error is reported in
GaussDB, but an error is reported in
MySQL.

● If precision transfer is disabled
(m_format_behavior_compat_options is
not set to 'enable_precision_decimal'),
when an aggregate function uses other
functions, operators, or expressions such
as SELECT clauses as input parameters, for
example, SELECT sum(abs(n)) FROM t,
but cannot obtain the precision
information transferred by the input
parameter expression, the result precision
of the function is different from that of
MySQL.

● The result of the aggregate function
varies depending on the data input
sequence.
– For example, if ORDER BY is used

together with the aggregate function,
the execution sequence of the function
is changed. As a result, the result is
inconsistent with that in MySQL.
-- Prepare a base table.
CREATE TABLE test_n(col_unumeric1 decimal(4,3)
unsigned, col_znumeric2 decimal(3,2) unsigned
zerofill, col_znumeric3 decimal(5,3) unsigned
zerofill);
Query OK, 0 rows affected (0.01 sec)

INSERT INTO test_n VALUES(1.010, 2.02, 3.303),
(1.190, 2.29, 3.339),(1.180, 2.28, 3.338);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

CREATE TABLE test_n_2(col_unumeric1
decimal(4,3) unsigned, col_znumeric2 decimal(3,2)
unsigned zerofill, col_znumeric3 decimal(5,3)
unsigned zerofill);
Query OK, 0 rows affected (0.02 sec)

INSERT INTO test_n_2 VALUES(1.180, 2.28, 3.338),
(1.190, 2.29, 3.339),(1.010, 2.02, 3.303);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

CREATE TABLE IF NOT EXISTS fun_op_case_tb_1 (id
int, name varchar(20), col_unumeric1
NUMERIC(4,3) unsigned, col_znumeric2
DECIMAL(3,2) zerofill,col_znumeric3 DEC(5,3)
zerofill);
CREATE TABLE

INSERT INTO fun_op_case_tb_1 (id, name,
col_unumeric1, col_znumeric2, col_znumeric3)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

No. MySQL GaussDB Difference

VALUES
(1, 'Computer', 1.11, 2.12, 3.133),
(2, 'Computer', 2.11, 2.22, 3.233),
(3, 'Computer', 3.11, 2.32, 3.333),
(4, 'Computer', 1.41, 2.42, 3.343),
(5, 'Computer', 1.51, 2.52, 3.353),
(6, 'Computer', 1.61, 2.26, 3.363),
(7, 'Computer', 1.17, 2.27, 3.337),
(8, 'Computer', 1.18, 2.28, 3.338),
(9, 'Computer', 1.19, 2.29, 3.339),
(10, 'Computer', 1.01, 2.02, 3.303),
(1, 'Software', 1.11, 2.12, 3.133),
(2, 'Software', 2.11, 2.22, 3.233),
(3, 'Software', 3.11, 2.32, 3.333),
(4, 'Software', 1.41, 2.42, 3.343),
(5, 'Software', 1.51, 2.52, 3.353),
(6, 'Software', 1.61, 2.26, 3.363),
(7, 'Software', 1.17, 2.27, 3.337),
(8, 'Software', 1.18, 2.28, 3.338),
(9, 'Software', 1.19, 2.29, 3.339),
(10, 'Software', 1.01, 2.02, 3.303),
(1, 'Database', 1.11, 2.12, 3.133),
(2, 'Database', 2.11, 2.22, 3.233),
(3, 'Database', 3.11, 2.32, 3.333),
(4, 'Database', 1.41, 2.42, 3.343),
(5, 'Database', 1.51, 2.52, 3.353),
(6, 'Database', 1.61, 2.26, 3.363),
(7, 'Database', 1.17, 2.27, 3.337),
(8, 'Database', 1.18, 2.28, 3.338),
(9, 'Database', 1.19, 2.29, 3.339),
(10, 'Database', 1.01, 2.02, 3.303);
INSERT 0 30
-- GaussDB:
m_db=# SELECT * FROM test_n;
 col_unumeric1 | col_znumeric2 | col_znumeric3
---------------+---------------+---------------
 1.010 | 2.02 | 03.303
 1.190 | 2.29 | 03.339
 1.180 | 2.28 | 03.338
m_db=# SELECT * FROM test_n_2;
 col_unumeric1 | col_znumeric2 | col_znumeric3
---------------+---------------+---------------
 1.180 | 2.28 | 03.338
 1.190 | 2.29 | 03.339
 1.010 | 2.02 | 03.303
m_db=# SELECT std(col_unumeric1*(col_znumeric2
| col_znumeric3)) FROM test_n_2 ;
 std

 0.24779023386727736
(1 row)
m_db=# SELECT std(col_unumeric1*(col_znumeric2
| col_znumeric3)) FROM test_n ;
 std

 0.24779023386727742
(1 row)

m_db=# SELECT std(col_unumeric1*(col_znumeric2
| col_znumeric3)) FROM fun_op_case_tb_1 GROUP
BY name ORDER BY name;
 std

 1.8167446160646796
 1.8167446160646794

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

No. MySQL GaussDB Difference

 1.8167446160646796
(3 rows)

--MySQL:
mysql> SELECT * FROM test_n;
+---------------+---------------+---------------+
| col_unumeric1 | col_znumeric2 | col_znumeric3 |
+---------------+---------------+---------------+
1.010	2.02	03.303
1.190	2.29	03.339
1.180	2.28	03.338
+---------------+---------------+---------------+		
3 rows in set (0.00 sec)		
mysql> SELECT *FROM test_n_2;		
+---------------+---------------+---------------+		
col_unumeric1	col_znumeric2	col_znumeric3
+---------------+---------------+---------------+		
1.180	2.28	03.338
1.190	2.29	03.339
1.010	2.02	03.303
+---------------+---------------+---------------+		
3 rows in set (0.00 sec)		
mysql> SELECT std(col_unumeric1*(col_znumeric2		
col_znumeric3)) FROM test_n_2 ;		
+--+		
std(col_unumeric1*(col_znumeric2		
col_znumeric3))		
+--+		
0.24779023386727736		
+--+		
1 row in set (0.00 sec)		
mysql> SELECT std(col_unumeric1*(col_znumeric2		
col_znumeric3)) FROM test_n;		
+--+		
std(col_unumeric1*(col_znumeric2		
col_znumeric3))		
+--+		
0.24779023386727742		
+--+
1 row in set (0.00 sec)

mysql> SELECT std(col_unumeric1*(col_znumeric2 |
col_znumeric3)) FROM fun_op_case_tb_1 GROUP
BY name ORDER BY name;
+--+
| std(col_unumeric1*(col_znumeric2 |
col_znumeric3)) |
+--+
| 1.8167446160646794 |
| 1.8167446160646794 |
| 1.8167446160646794 |
+--+
3 rows in set (0.00 sec)

-- Delete the base table.
DROP TABLE test_n;
DROP TABLE
DROP TABLE test_n_2;
DROP TABLE
DROP TABLE fun_op_case_tb_1;
DROP TABLE

– For example, if WITH ROLLUP is used
together with the aggregate function,
the execution sequence of the function

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

No. MySQL GaussDB Difference

is changed. As a result, the result is
inconsistent with that in MySQL.
-- Prepare a base table.
CREATE TABLE IF NOT EXISTS t1 (name
VARCHAR(20), c1 INT(100), c2 FLOAT(7,5));
INSERT INTO t1 VALUES
('Computer', 666,-55.155),
('Computer', 789, -15.593),
('Computer', 928,-53.963),
('Computer', 666, -54.555),
('Computer', 666,-55.555),
('Database', 666,-55.155),
('Database', 789, -15.593),
('Database', 928,-53.963),
('Database', 666, -54.555),
('Database', 666,-55.555);

-- GaussDB:
m_db=# select name, std(c1/c2) c5 from t1 group
by name with rollup;
 name | c5
--------+--------------------
 Database | 15.02396266299967
 Computer | 15.023962662999669
 | 15.02396266299967
(3 rows)

--MySQL
mysql> select name, std(c1/c2) c5 from t1 group
by name with rollup;
+-----------+--------------------+
| name | c5 |
+-----------+--------------------+
Database	15.023962662999669
Computer	15.023962662999669
NULL	15.02396266299967
+-----------+--------------------+
3 rows in set (0.00 sec)

-- Delete the base table.
DROP TABLE t1;
DROP TABLE

● If GROUP BY is used together with the
aggregate function and the intermediate
result of the DECIMAL data type is
involved in calculation, data distortion
occurs in MySQL, and GaussDB retains
data in full precision.
-- Prepare a base table.
CREATE TABLE IF NOT EXISTS fun_op_case_tb_1 (id
int,name varchar(20),col_znumeric2 DECIMAL(3,2)
zerofill,col_znumeric3 DEC(5,3) zerofill, col_bit1 BIT(3),
col_time2 time);

INSERT INTO fun_op_case_tb_1 VALUES
(1, 'Computer', 0.01, 3.130, b'101', '08:30:23.01'),
(2, 'Computer', 1.20, 30.990, b'101', '08:30:23.01'),
(3, 'Computer', 1.33, 43.500, b'101', '08:30:23.01'),
(4, 'Computer', 2.24, 30.990, b'101', '08:30:23.01'),
(5, 'Computer', 1.25, 43.600, b'101', '08:30:23.01'),
(6, 'Computer', 2.20, '20.900', b'101', '08:30:23.01'),
(7, 'Computer', 2.20, '20.900', b'101', '08:30:23.01'),
(8, 'Computer', 2.20, '20.900', b'101', '08:30:23.01'),

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

No. MySQL GaussDB Difference

(9, 'Computer', 2.29, '22.780', b'101', '08:30:23.01'),
(10, 'Computer', 2.02, '20.900', b'101', '08:30:23.01')

-- GaussDB:
m_db=# SET m_format_behavior_compat_options=
'enable_precision_decimal';
m_db=# SELECT avg(col_znumeric3/col_znumeric2)
FROM fun_op_case_tb_1 WHERE id<=10 GROUP BY
name;
 avg

 46.90407212526
(1 row)
m_db=# SELECT sum(col_bit1/col_time2) FROM
fun_op_case_tb_1 WHERE id<=10 GROUP BY name;
 sum

 0.0006
(1 rows)

--MySQL:
mysql> SELECT avg(col_znumeric3/col_znumeric2)
FROM fun_op_case_tb_1 WHERE id<=10 GROUP BY
name;
+----------------------------------+
| avg(col_znumeric3/col_znumeric2) |
+----------------------------------+
| 46.90407213000 |
+----------------------------------+
1 row in set (0.00 sec)
mysql> SELECT sum(col_bit1/col_time2) FROM
fun_op_case_tb_1 WHERE id<=10 GROUP BY name;
+-------------------------+
| sum(col_bit1/col_time2) |
+-------------------------+
| 0.0010 |
+-------------------------+
1 row in set (0.00 sec)
-- Delete a base table.
DROP TABLE fun_op_case_tb_1;
DROP TABLE

3.3.8 JSON Functions

Table 3-18 JSON functions

No. MySQL GaussDB Difference

1 JSON_APPEND() Supported. -

2 JSON_ARRAY() Supported. -

3 JSON_ARRAY_APP
END()

Supported. -

4 JSON_ARRAY_INSE
RT()

Supported. -

5 JSON_CONTAINS() Supported. -

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 178

No. MySQL GaussDB Difference

6 JSON_CONTAINS_
PATH()

Supported. -

7 JSON_DEPTH() Supported. -

8 JSON_EXTRACT() Supported. -

9 JSON_INSERT() Supported. -

10 JSON_KEYS() Supported. -

11 JSON_LENGTH() Supported. -

12 JSON_MERGE() Supported. -

13 JSON_MERGE_PAT
CH()

Supported. -

14 JSON_MERGE_PRE
SERVE()

Supported. -

15 JSON_OBJECT() Supported. -

16 JSON_QUOTE() Supported. -

17 JSON_REMOVE() Supported. -

18 JSON_REPLACE() Supported. -

19 JSON_SEARCH() Supported. -

20 JSON_SET() Supported. -

21 JSON_TYPE() Supported. -

22 JSON_UNQUOTE() Supported, with
differences.

The scenarios where escape
characters \0 and \uxxxx are
used are different from those in
MySQL.
SELECT JSON_UNQUOTE('"\0"');
mysql> SELECT JSON_UNQUOTE('"\0"');
ERROR 3141 (22032): Invalid JSON text in
argument 1 to function json_unquote:
"Missing a closing quotation mark in
string." at position 1.
m_db=# select JSON_UNQUOTE('"\0"');
ERROR: invalid byte sequence for
encoding "UTF8": 0x00

23 JSON_VALID() Supported. -

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

NO TE

JSON function differences: If JSON functions and other functions using characters as input
parameters contain escape characters, the functions are different from those in MySQL by
default. In this case, you need to set the GUC parameter SET
m_format_behavior_compat_options to 'enable_escape_string'. Only scenarios involving
escape characters are compatible with those in MySQL, but among them, scenarios
involving \f, \Z, \0, and \uxxxx are different from MySQL.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

3.3.9 Window Functions

Table 3-19 Window functions

No. MySQL GaussDB Difference

1 LAG() Supporte
d, with
differenc
es.

● The value range of offset N is different.
In MySQL, N must be an integer in the range
[0, 263-1].
In GaussDB, N must be an integer in the
range [0, 231-1].

● The value of offset N varies in terms of the
value format.
– In MySQL, the value format is as follows:

– Unsigned integer of a constant literal.
– Parameter marker denoted by a

question mark (?) in the PREPARE
statement.

– User-defined variable.
– Local variable in a stored procedure.

– In GaussDB, the value format is as follows:
– Unsigned integer of a constant literal.
– Parameter markers denoted by a

question mark (?) in the PREPARE
statement are not supported (current
difference in the PREPARE statement).

– User-defined variable.
– Local variables in stored procedures are

not supported. (Currently, PL/SQL does
not support local variables.)

● The sorting of NULL values in the ORDER BY
clause is different.
In MySQL, NULL values are placed at the
front by default when sorted in ascending
order.
In GaussDB, NULL values are placed at the
end by default when sorted in ascending
order.

● The sorting of NULL values in the ORDER BY
clause is different.
In MySQL, precision is included.
In GaussDB, precision is missing.

● The display of binary character strings is
different.
In MySQL, the hexadecimal code value of a
binary character string is displayed. For
example, '-4' is displayed as 0x2D34.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

No. MySQL GaussDB Difference

In GaussDB, the value of the original
character string is displayed. For example, '–4'
is displayed as '–4'.

● When DESC is used to view the structure of a
table created using the CREATE TABLE AS
syntax, the differences are as follows:
In MySQL 8.0:
– If a column type in a table is BIGINT or

INT, the width is not displayed.
– If the width of a column type (Type) in a

table is 0, the width is displayed, for
example, binary(0).

In GaussDB:
– If a column type in a table is BIGINT or

INTEGER, the width is displayed.
– If the width of a column type in a table is

0, the width is not displayed. For example,
binary(0) is displayed as binary.

– The function of identifying columns with
null and default values in a table structure
is not implemented currently.

● When this function is used as a subquery
together with CREATE TABLE AS and no error
or alarm is reported when the subquery
statement of this function is executed
independently, the difference is as follows:
– If GaussDB is in strict or loose mode, the

CREATE TABLE AS statement is
successfully executed and a table is
successfully created.

– If MySQL is in strict mode, an error may be
reported when the CREATE TABLE AS
statement is executed, and table creation
fails.

2 LEAD() Supporte
d, with
differenc
es.

The differences are the same as those of the
LAG() function.

3 ROW_NU
MBER()

Supporte
d, with
differenc
es.

When the ORDER BY clause is used for sorting,
the sorting of NULL values is different.
In MySQL, NULL values are placed at the front
by default when sorted in ascending order.
In GaussDB, NULL values are placed at the end
by default when sorted in ascending order.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

NO TE

Differences in window functions: When MySQL management system calls window
functions, the ORDER BY and PARTITION BY clauses under the OVER clause do not support
column aliases, but GaussDB supports column aliases.

3.3.10 Arithmetic Functions

Table 3-20 Arithmetic functions

No. MySQL GaussDB Difference

1 ABS() Supported. -

2 ACOS() Supported. -

3 ASIN() Supported. -

4 ATAN() Supported. -

5 ATAN2() Supported. -

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 183

No. MySQL GaussDB Difference

6 CEILING() Supported,
with
differences.

Some operation result types and
the precision of CREATE TABLE
AS are inconsistent with that in
MySQL.
1. If the input parameter is of

the INT type, the return value
type is BIGINT in GaussDB
and INT in MySQL.

2. If the input parameter is of
the BIGINT or BIGINT
UNSIGNED type and the input
parameter value contains 20
or more characters (including
the sign bit), GaussDB returns
an integer, whereas MySQL
5.7 returns a decimal. In this
case, the difference lies in the
CEILING function that is used
as the inner function in
nesting.
SET
m_format_behavior_compat_options='e
nable_precision_decimal';
CREATE TABLE tt AS SELECT
ceiling(-9223372036854775808);
DESC tt;
The return type of MySQL
table fields is DECIMAL(16,0).
The return type of GaussDB
table fields is BIGINT(17).

3. If the input parameter is of
the NUMERIC type, the return
type may be different from
that in MySQL. If the
parameter is a constant or
table field, the result type is
the same as that in MySQL
5.7. For other types of input
parameters, such as nested
input parameters, the results
are different. GaussDB returns
the result of the NUMERIC
type, whereas MySQL may
return an integer.
SET
m_format_behavior_compat_options='e
nable_precision_decimal';
CREATE TABLE t AS SELECT
ceiling(-5.5);
DESC t;
The return type of MySQL
table fields is INT(5).

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

No. MySQL GaussDB Difference

The return type of GaussDB
table fields is INT(5).
SET
m_format_behavior_compat_options='e
nable_precision_decimal';
CREATE TABLE t AS SELECT
ceiling(abs(5.5));
DESC t;

The return type of MySQL
table fields is INT(4).
The return type of GaussDB
table fields is DECIMAL(3,0).

7 COS() Supported. -

8 DEGREES() Supported. -

9 EXP() Supported. -

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 185

No. MySQL GaussDB Difference

10 FLOOR() Supported,
with
differences.

Some operation result types and
the precision of CREATE TABLE
AS are inconsistent with that in
MySQL.
1. If the input parameter is of

the INT type, the return value
type is BIGINT in GaussDB
and INT in MySQL.

2. If the input parameter is of
the BIGINT or BIGINT
UNSIGNED type and the input
parameter value contains 20
or more characters (including
the sign bit), GaussDB returns
an integer, whereas MySQL
5.7 returns a decimal. In this
case, the difference lies in the
floor function that is used as
the inner function in nesting.
-- In loose mode:
SET
m_format_behavior_compat_options='e
nable_precision_decimal';
CREATE TABLE tt AS SELECT
floor(-9223372036854775808);
DESC tt;
The return type of MySQL
table fields is DECIMAL(16,0).
The return type of GaussDB
table fields is BIGINT(17).

3. If the input parameter is of
the NUMERIC type, the return
type may be different from
that in MySQL. If the
parameter is a constant or
table field, the result type is
the same as that in MySQL
5.7. For other types of input
parameters, such as nested
input parameters, the results
are different. GaussDB returns
the result of the NUMERIC
type, whereas MySQL may
return an integer.
SET
m_format_behavior_compat_options='e
nable_precision_decimal';
CREATE TABLE t AS SELECT floor(-5.5);
DESC t;
The return type of MySQL
table fields is INT(5).

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 186

No. MySQL GaussDB Difference

The return type of GaussDB
table fields is INT(5).
SET
m_format_behavior_compat_options='e
nable_precision_decimal';
CREATE TABLE t AS SELECT
floor(abs(5.5));
DESC t;

The return type of MySQL
table fields is INT(4).
The return type of GaussDB
table fields is DECIMAL(3,0).

11 LN() Supported. -

12 LOG() Supported. -

13 LOG10() Supported. -

14 LOG2() Supported. -

15 PI() Supported. When the precision transfer
function is disabled, that is,
m_format_behavior_compat_op
tions is not set to
enable_precision_decimal, the
returned value of the PI function
is rounded off to six decimal
places in MySQL, but is rounded
off to 15 decimal places in
GaussDB.

16 POW() Supported. -

17 POWER() Supported. -

18 RAND() Supported. -

19 SIGN() Supported. -

20 SIN() Supported. -

21 SQRT() Supported. -

22 TAN() Supported. -

23 TRUNCATE() Supported. -

24 CEIL() Supported. -

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 187

No. MySQL GaussDB Difference

25 CRC32() Supported,
with
differences.

When the length of the inserted
string of the BINARY type is less
than the target length, the
padding characters in GaussDB
are different from those in
MySQL. Therefore, when the
input parameter is of the BINARY
type, the function result in
GaussDB is different from that in
MySQL.

26 CONV() Supported. -

3.3.11 Network Address Functions

Table 3-21 Network address functions

No. MySQL GaussDB Difference

1 INET_ATO
N()

Supported. -

2 INET_NTO
A()

Supported. -

3 INET6_AT
ON()

Supported. -

4 INET6_NT
OA()

Supported,
with
differences
.

In GaussDB, the valid input parameter type
can be VARBINARY or BINARY.
In MySQL, valid input parameter types include
TINYBLOB, MEDIUMBLOB, LONGBLOB, and
BLOB.

5 IS_IPV6() Supported. -

6 IS_IPV4() Supported. -

3.3.12 Other Functions

Table 3-22 Other functions

No. MySQL GaussDB Difference

1 DATABAS
E()

Supporte
d.

-

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 188

No. MySQL GaussDB Difference

2 UUID() Supporte
d.

-

3 UUID_SH
ORT()

Supporte
d.

-

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 189

No. MySQL GaussDB Difference

4 ANY_VAL
UE()

Supporte
d, with
differenc
es.

● The first data record in a group is uncertain,
depending on the underlying operator. For
example, for the same SQL statement,
GaussDB returns 5 and 4, and MySQL returns
5 and 2.
CREATE TABLE t1(a INT, b INT);
INSERT INTO t1 VALUES(1, 5);
INSERT INTO t1 VALUES(2, 4);
INSERT INTO t1 VALUES(2, 2);
CREATE TABLE t2(a INT, b INT);
INSERT INTO t2 VALUES(2, 7);
INSERT INTO t2 VALUES(3, 9);
m_db=# SELECT ANY_VALUE(t1.b) FROM t1 LEFT JOIN t2
ON t1.a=t1.b GROUP BY t1.a;
 any_value

 5
 4
(2 rows)
mysql> SELECT ANY_VALUE(t1.b) FROM t1 LEFT JOIN t2
ON t1.a=t1.b GROUP BY t1.a;
+-----------------+
| ANY_VALUE(t1.b) |
+-----------------+
| 5 |
| 2 |
+-----------------+
2 rows in set (0.04 sec)
DROP TABLE t1;
DROP TABLE t2;

● When used with the DISTINCT keyword, if the
columns to be sorted in ORDER BY are not
included in the columns of the result set
retrieved by the SELECT statement, the
ANY_VALUE function cannot be used in
GaussDB in case of errors.
CREATE TABLE t1(a INT, b INT);
INSERT INTO t1 VALUES(1, 2);
INSERT INTO t1 VALUES(1, 3);
m_db=# SELECT DISTINCT a FROM t1 ORDER BY
ANY_VALUE(b);
ERROR: For SELECT DISTINCT, ORDER BY expressions must
appear in select list.
LINE 1: SELECT DISTINCT a FROM t1 ORDER BY
ANY_VALUE(b);
 ^
mysql> SELECT DISTINCT a FROM t1 ORDER BY
ANY_VALUE(b);
+------+
| a |
+------+
| 1 |
+------+
1 row in set (0.00 sec)
DROP TABLE t1;

● When an input parameter of the ANY_VALUE
function is NULL or of the string type, the
return value type is different from that in
MySQL. For example:

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 190

No. MySQL GaussDB Difference

– If the input parameter is NULL, the return
value type in GaussDB is BIGINT and that
in MySQL is binary.

– If the input parameter is of the VARCHAR
type, the return value type is VARCHAR in
GaussDB, but may be VARCHAR or TEXT in
MySQL.

5 SLEEP() Supporte
d, with
differenc
es.

● When the SLEEP function is being called, if
you press Ctrl+C to end the process in
advance, only "Cancel request sent" is
displayed in GaussDB, which is different from
the display information in MySQL.

● In addition to the above situation, when the
SLEEP function is being called in other SQL
statements, if you press Ctrl+C to end the
statement in advance and the operation is
obtained by the SLEEP function, no error is
reported; if the value is obtained by other
functions in the system, an error is reported.
This behavior is different from that in MySQL.

● During the execution of the SLEEP function, if
the process is ended by a related command
(for example, SELECT
PG_TERMINATE_BACKEN(xxx);), GaussDB
reports an error, which is different from
MySQL.

6 COLLATI
ON()

Supporte
d, with
differenc
es.

GaussDB supports only the collation in the utf8,
utf8mb4, gbk, gb18030, and latin1 character
sets.

7 FOUND_R
OWS()

Supporte
d.

-

8 ROW_CO
UNT()

Supporte
d, with
differenc
es.

● GaussDB does not have SIGNAL statements,
but MySQL supports SIGNAL statements.

● In GaussDB, the connection parameter
CLIENT_FOUND_ROWS does not exist. Even
if this parameter is set, it does not take effect
and the number of matched rows is returned
instead of the number of affected rows.
Therefore, the number of affected rows is
returned in a unified manner. In MySQL, the
number of affected rows is affected by this
parameter.

● For each conflict triggered by INSERT ON
DUPLICATE KEY UPDATE, 1 is returned in
GaussDB, and 2 is returned in MySQL.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 191

No. MySQL GaussDB Difference

9 SYSTEM_
USER()

Supporte
d, with
differenc
es.

In MySQL, if skip-name-resolve is included in a
configuration file, 127.0.0.1 or ::1 is not parsed
as localhost, but GaussDB does not have related
parameters and always parses 127.0.0.1 and ::1
as localhost.

10 DEFAULT(
)

Supporte
d, with
differenc
es.

GaussDB supports column aliases, but MySQL
does not.

11 BENCHM
ARK()

Supporte
d, with
differenc
es.

● The execution layer frameworks of MySQL
and GaussDB are different. Therefore, the
execution time of the same expression
estimated by the function in MySQL and
GaussDB is not comparable. This function is
used only to compare the execution efficiency
of different GaussDB expressions.

● If the execution takes a long time, when you
press Ctrl+C on the client, the MySQL returns
0 and ends the task. The GaussDB displays
"Cancel request sent" and ends the task.

3.4 Operators
GaussDB is compatible with most MySQL operators, but there are some
differences. If they are not listed, the operator behavior is the native behavior of
GaussDB by default. Currently, there are statements that are not supported by
MySQL but supported by GaussDB. You are advised not to use these statements.

Operator Differences
● NULL values in ORDER BY are sorted in different ways. MySQL sorts NULL

values first, while GaussDB sorts NULL values last. In GaussDB, nulls first and
nulls last can be used to set the sorting sequence of NULL values.

● If ORDER BY is used, the output sequence of GaussDB is the same as that of
MySQL. Without ORDER BY, GaussDB does not guarantee that the results are
ordered.

● MySQL operators must use parentheses to strictly combine expressions.
Otherwise, an error is reported. For example, SELECT 1 regexp ('12345' regexp
'123').
The GaussDB M-compatible operators can be successfully executed without
using parentheses to strictly combine expressions.

● NULL values are displayed in different ways. MySQL displays a NULL value as
"NULL". GaussDB displays a NULL value as empty.
MySQL output:
mysql> Select NULL;
+------+

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 192

| NULL |
+------+
| NULL |
+------+
1 row in set (0.00 sec)

GaussDB output:
m_db=# select NULL;
 ?column?

(1 row)

● After the operator is executed, the column names are displayed in different
ways. MySQL displays a NULL value as "NULL". GaussDB displays a NULL
value as empty.

● When character strings are being converted to the double type but there is an
invalid one, the alarm is reported differently. MySQL reports an error when
there is an invalid constant character string, but does not report an error for
an invalid column character string. GaussDB reports an error in either
situation.

● The results returned by the comparison operator are different. For MySQL, 1
or 0 is returned. For GaussDB, t or f is returned.

Table 3-23 Operators

No. MySQL GaussDB Difference

1 <> Supported,
with
differences.

MySQL supports indexes, but GaussDB
does not.

2 <=> Supported,
with
differences.

MySQL supports indexes, but GaussDB
does not support indexes, hash joins,
or merge joins.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 193

No. MySQL GaussDB Difference

3 Row
expressions

Supported,
with
differences.

● MySQL supports row comparison
using the <=> operator, but
GaussDB does not support row
comparison using the <=> operator.

● MySQL does not support
comparison between row
expressions and NULL values. In
GaussDB, the <, <=, =, >=, >, and <>
operators can be used to compare
row expressions with NULL values.

● IS NULL or ISNULL operations on
row expressions are not supported
in MySQL. However, they are
supported in GaussDB.

● For operations by using operators
that cannot be performed on row
expressions, the error information in
GaussDB is inconsistent with that in
MySQL.

● MySQL does not support
ROW(values), in which values
contains only one column of data,
but GaussDB supports.

GaussDB:
m_db=# SELECT (1,2) <=> row(2,3);
ERROR: could not determine interpretation of row
comparison operator <=>
LINE 1: select (1,2) <=> row(2,3);
 ^
HINT: unsupported operator.
m_db=# SELECT (1,2) < NULL;
 ?column?

(1 row)
m_db=# SELECT (1,2) <> NULL;
 ?column?

(1 row)
m_db=# SELECT (1, 2) IS NULL;
 ?column?

 f
(1 row)
m_db=# SELECT ISNULL((1, 2));
 ?column?

 f
(1 row)
m_db=# SELECT ROW(0,0) BETWEEN ROW(1,1)
AND ROW(2,2);
ERROR: un support type
m_db=# SELECT ROW(NULL) AS x;
 x

 ()
(1 row)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 194

No. MySQL GaussDB Difference

MySQL:
mysql> SELECT (1,2) <=> row(2,3);
+--------------------+
| (1,2) <=> row(2,3) |
+--------------------+
| 0 |
+--------------------+
1 row in set (0.00 sec)

mysql> SELECT (1,2) < NULL;
ERROR 1241 (21000): Operand should contain 2
column(s)
mysql> SELECT (1,2) <> NULL;
ERROR 1241 (21000): Operand should contain 2
column(s)
mysql> SELECT (1, 2) IS NULL;
ERROR 1241 (21000): Operand should contain 1
column(s)
mysql> SELECT ISNULL((1, 2));
ERROR 1241 (21000): Operand should contain 1
column(s)
mysql> SELECT NULL BETWEEN NULL AND
ROW(2,2);
ERROR 1241 (21000): Operand should contain 1
column(s)
mysql> SELECT ROW(NULL) AS x;
ERROR 1064 (42000): You have an error in your
SQL syntax; check the manual that corresponds to
your MySQL server version for the right syntax to
use near ') as x' at line 1

4 -- Supported. MySQL indicates that an operand is
negated twice and the result is equal
to the original operand. GaussDB
indicates a comment.

5 !! Supported,
with
differences.

MySQL: The meaning of !! is the same
as that of !, indicating NOT.
GaussDB: ! indicates NOT. If there is a
space between two exclamation marks
(! !), it indicates NOT for twice. If there
is no space between them (!!), it
indicates factorial.
NOTE

● In GaussDB, when both factorial (!!)
and NOT (!) are used, a space must be
added between them. Otherwise, an
error is reported.

● In GaussDB, when multiple NOT
operations are required, use a space
between exclamation marks (! !).

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 195

No. MySQL GaussDB Difference

6 [NOT] REGEXP Supported,
with
differences.

● GaussDB and MySQL support
different metacharacters in regular
expressions. For example, GaussDB
allows \d to indicate digits, \w to
indicate letters, digits, and
underscores (_), and \s to indicate
spaces. However, MySQL does not
support these metacharacters and
considers them as normal character
strings.

● In GaussDB, '\b' can match '\\b', but
in MySQL, the matching will fail.

● In the new GaussDB framework, a
backslash (\) indicates an escape
character. In MySQL, two
backslashes (\\) are used.

● MySQL does not support two
operators to be used together.

● GaussDB reports an error when the
input parameter of the pattern
string pat is invalid and only the
right single parenthesis ')' exists.
MySQL has a bug, which has been
fixed in later versions.

● When de|abc matches de or abc, if
there is a null value on the left or
right of |, MySQL reports an error.
This bug has been fixed in later
versions.

● The regular expression of the blank
character [\t] can match the
character class [:blank:] in GaussDB,
but MySQL's [\t] cannot match
[:blank:]. MySQL has a bug, which
has been fixed in later versions.

● GaussDB supports non-greedy
pattern matching. That is, the
number of matching characters is
as small as possible. A question
mark (?) is added after some
special characters, for example, ??,
*?, +?, {n}?, {n,}?, and {n,m}?.
MySQL 5.7 does not support non-
greedy pattern matching, and the
error message "Got error
'repetition-operator operand invalid'
from regexp" is displayed. MySQL
8.0 already supports this function.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 196

No. MySQL GaussDB Difference

● In the binary character set, the text
and BLOB types are converted to
the bytea type. The REGEXP
operator does not support the bytea
type. Therefore, the two types
cannot be matched.

7 LIKE Supported,
with
differences.

MySQL: The left operand of LIKE can
only be an expression of a bitwise or
arithmetic operation, or expression
consisting of parentheses. The right
operand of LIKE can only be an
expression consisting of unary
operators (excluding NOT) or
parentheses.
GaussDB: The left and right operands
of LIKE can be any expression.

8 [NOT]
BETWEEN AND

Supported,
with
differences.

MySQL: [NOT] BETWEEN AND is
nested from right to left. The first and
second operands of [NOT] BETWEEN
AND can only be expressions of
bitwise or arithmetic operations, or
expressions consisting of parentheses.
GaussDB: [NOT] BETWEEN AND is
nested from left to right. The first and
second operands of [NOT] BETWEEN
AND can be any expression.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 197

No. MySQL GaussDB Difference

9 IN Supported,
with
differences.

MySQL: The left operand of IN can
only be an expression of a bitwise or
arithmetic operation, or expression
consisting of parentheses.
GaussDB: The left operand of IN can
be any expression. The query in ROW
IN (ROW,ROW...) format is not
supported.
When precision transfer is enabled and
the in operator is used for data in a
table, if the data in the table is of the
FLOAT or DOUBLE type and includes
the corresponding precision and scale,
such as float (4,2) or double (4,2),
GaussDB compares values based on
the precision and scale, but MySQL
reads values in the memory, which are
distorted values, causing unequal
comparison results.
-- GaussDB:
m_db=# CREATE TABLE test1(t_float float(4,2));
CREATE TABLE
m_db=# INSERT INTO test1 VALUES(1.42),(2.42);
INSERT 0 2
m_db=# SELECT t_float, t_float in (1.42,2.42)
FROM test1;
 t_float | ?column?
---------+----------
 1.42 | t
 2.42 | t
(2 rows)
--MySQL:
mysql> CREATE TABLE test1(t_float float(4,2));
Query OK, 0 rows affected (0.01 sec)
mysql> INSERT INTO test1 VALUES(1.42),(2.42);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0
mysql> SELECT t_float, t_float in (1.42,2.42) FROM
test1;
+---------+------------------------+
| t_float | t_float in (1.42,2.42) |
+---------+------------------------+
| 1.42 | 0 |
| 2.42 | 0 |
+---------+------------------------+
2 rows in set (0.00 sec)

10 ! Supported,
with
differences.

MySQL: The operand of ! can only be
an expression consisting of unary
operators (excluding NOT) or
parentheses.
GaussDB: The operand of ! can be any
expression.

11 # Not
supported.

MySQL supports the comment tag (#),
but GaussDB does not.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 198

No. MySQL GaussDB Difference

12 BINARY Supported,
with
differences.

Expressions (including some functions
and operators) supported by GaussDB
are different from those supported by
MySQL. For GaussDB-specific
expressions such as '~' and 'IS
DISTINCT FROM', due to the higher
priority of the BINARY keyword, when
BINARY expr is used, BINARY is
combined with the left parameters of
'~' and 'IS DISTINCT FROM' first. As a
result, an error is reported.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 199

No. MySQL GaussDB Difference

13 Negation (-) Supported,
with
differences.

The type and precision of the negation
result are inconsistent with those in
the MySQL.
CREATE TABLE t as select - -1;

● The return type of MySQL table
fields is decimal(2,0).

● The return type of GaussDB table
fields is integer(1).

When precision transfer is enabled
(m_format_behavior_compat_options
is set to 'enable_precision_decimal'),
the precision of the negative constant
data type may be different from that
in MySQL. In MySQL 5.7, when the
expression contains negation
operators, the max_length of the
result precision increases based on the
number of the negation operators, but
this will not happen in GaussDB. For
example:
● GaussDB:

m_db=# DROP TABLE IF EXISTS test;
NOTICE: table "test" does not exist, skipping
DROP TABLE
m_db=# CREATE TABLE test as
m_db-# SELECT format(-4.4600e3,1) f9;
INSERT 0 1
m_db=# DESC test;
 Field | Type | Null | Key | Default | Extra
-------+-------------+------+-----+---------+-------
 f9 | varchar(45) | YES | | |
(1 row)

m_db=# DROP TABLE IF EXISTS t1;
NOTICE: table "t1" does not exist, skipping
DROP TABLE
m_db=# CREATE TABLE t1 AS SELECT CAST(-
-4.46 AS BINARY) c4,CONVERT(- -
-002.2600,binary) c14;
INSERT 0 1
m_db=# DESC t1;
 Field | Type | Null | Key | Default | Extra
-------+---------------+------+-----+---------
+-------
 c4 | varbinary(5) | YES | | |
 c14 | varbinary(10) | YES | | |
(2 rows)

m_db=# DROP VIEW IF EXISTS v2;
NOTICE: view "v2" does not exist, skipping
DROP VIEW
m_db=# CREATE VIEW v2 AS SELECT CAST(-
-4.46 AS BINARY) c4,CONVERT(- -
-002.2600,binary) c14;
CREATE VIEW
m_db=# DESC v2;
 Field | Type | Null | Key | Default | Extra
-------+--------------+------+-----+---------

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 200

No. MySQL GaussDB Difference

+-------
 c4 | varbinary(5) | YES | | |
 c14 | varbinary(8) | YES | | |
(2 rows)

● MySQL:
mysql> DROP TABLE IF EXISTS test;
Query OK, 0 rows affected (0.01 sec)

mysql> CREATE TABLE test as
 -> select format(-4.4600e3,1) f9;
Query OK, 1 row affected (0.01 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESC test;
+-------+-------------+------+-----+---------
+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------
+-------+
| f9 | varchar(63) | YES | | NULL | |
+-------+-------------+------+-----+---------
+-------+
1 row in set (0.00 sec)

mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected, 1 warning (0.00
sec)

mysql> CREATE TABLE t1 AS SELECT CAST(-
-4.46 AS BINARY) c4,CONVERT(- -
-002.2600,BINARY) c14;
Query OK, 1 row affected (0.02 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESC t1;
+-------+---------------+------+-----+---------
+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------+------+-----+---------
+-------+
| c4 | varbinary(7) | YES | | NULL | |
| c14 | varbinary(12) | YES | | NULL |
|
+-------+---------------+------+-----+---------
+-------+
2 rows in set (0.00 sec)

mysql> DROP VIEW IF EXISTS v2;
Query OK, 0 rows affected, 1 warning (0.00
sec)

mysql> CREATE VIEW v2 AS SELECT CAST(-
-4.46 AS BINARY) c4,CONVERT(- -
-002.2600,BINARY) c14;
Query OK, 0 rows affected (0.03 sec)

mysql> DESC v2;
+-------+---------------+------+-----+---------
+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------+------+-----+---------
+-------+
| c4 | varbinary(7) | YES | | NULL | |
| c14 | varbinary(10) | YES | | NULL |
|

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 201

No. MySQL GaussDB Difference

+-------+---------------+------+-----+---------
+-------+
2 rows in set (0.00 sec)

14 /**/ Not
supported.

Comments enclosed by /**/ are not
supported in GaussDB statements.

15 xor Supported,
with
differences.

The behavior of XOR in GaussDB is
different from that in MySQL. The
GaussDB optimizer performs constant
optimization. As a result, the results
that are constants are calculated first.
GaussDB:
m_db=# SELECT 1 xor null xor pow(200,
2000000) FROM dual;
ERROR: value out of range: overflow
m_db=# CREATE TABLE t1(a int, b int);
CREATE TABLE
m_db=# INSERT INTO t1 VALUES(2,2), (200,
2000000000);
INSERT 0 2
m_db=#
m_db=#
m_db=# SELECT 1 xor null xor pow(a, b) FROM t1;
 ?column?

(2 rows)

MySQL:
mysql> SELECT 1 xor null xor pow(200, 2000000)
FROM dual;
+----------------------------------+
| 1 xor null xor pow(200, 2000000) |
+----------------------------------+
| NULL |
+----------------------------------+
1 row in set (0.00 sec)
ysql> CREATE TABLE t1(a int, b int);
Query OK, 0 rows affected (0.04 sec)

mysql> INSERT INTO t1 VALUES(2,2), (200,
2000000000);
Query OK, 2 rows affected (0.01 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT 1 xor null xor pow(a, b) FROM t1;
+--------------------------+
| 1 xor null xor pow(a, b) |
+--------------------------+
| NULL |
| NULL |
+--------------------------+
2 rows in set (0.00 sec)

16 IS NULL and IS
NOT NULL

Supported,
with
differences.

In MySQL, these operators are inferior
to logical operators, but they are prior
to logical operators in GaussDB.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 202

No. MySQL GaussDB Difference

17 XOR, |, &, <, >,
<=, >=, =, and !
=

Supported,
but the
execution
mechanism
is different.

The execution mechanism of MySQL is
as follows: After the left operand is
executed, the system checks whether
the result is empty and then
determines whether to execute the
right operand.
As for the execution mechanism of
GaussDB, after the left and right
operands are executed, the system
checks whether the result is empty.
If the result of the left operand is
empty and an error is reported during
the execution of the right operand,
MySQL does not report an error but
directly returns an error. GaussDB
reports an error during the execution.
Behavior in MySQL:
mysql> SELECT version();
+------------------+
| version() |
+------------------+
| 5.7.44-debug-log |
+------------------+
1 row in set (0.00 sec)

mysql> DROP TABLE IF EXISTS data_type_table;
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE data_type_table (
 -> MyBool BOOL,
 -> MyBinary BINARY(10),
 -> MyYear YEAR
 ->);
Query OK, 0 rows affected (0.02 sec)

mysql> INSERT INTO data_type_table VALUES
(TRUE, 0x1234567890, '2021');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT (MyBool % MyBinary) | (MyBool -
MyYear) FROM data_type_table;
+---+
| (MyBool % MyBinary) | (MyBool - MyYear) |
+---+
| NULL |
+---+
1 row in set, 2 warnings (0.00 sec)

Behavior in GaussDB:
m_db=# DROP TABLE IF EXISTS data_type_table;
DROP TABLE
m_db=# CREATE TABLE data_type_table (
m_db(# MyBool BOOL,
m_db(# MyBinary BINARY(10),
m_db(# MyYear YEAR
m_db(#);
CREATE TABLE
m_db=# INSERT INTO data_type_table VALUES
(TRUE, 0x1234567890, '2021');
INSERT 0 1

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 203

No. MySQL GaussDB Difference

m_db=# SELECT (MyBool % MyBinary) | (MyBool
- MyYear) FROM data_type_table;
WARNING: Truncated incorrect double value:
'4Vx '
CONTEXT: referenced column: (MyBool %
MyBinary) | (MyBool - MyYear)
WARNING: division by zero
CONTEXT: referenced column: (MyBool %
MyBinary) | (MyBool - MyYear)
ERROR: Bigint is out of range.
CONTEXT: referenced column: (MyBool %
MyBinary) | (MyBool - MyYear)

18 +, -, *, /, %,
mod, div

Supported,
with
differences.

When the b "constant is embedded in
the CREATE VIEW AS SELECT
arithmetic operator ('+', '-', '*', '/', '%',
'mod', or 'div'), the return type in
MySQL 5.7 may contain the unsigned
identifier, but in GaussDB, the return
type does not contain the unsigned
identifier.
MySQL output:
mysql> CREATE VIEW v22 as SELECT b'101' /
b'101' c22;
Query OK, 0 rows affected (0.00 sec)

mysql> DESC v22;
+-------+-----------------------+------+-----+---------
+-------+
| Field | Type | Null | Key | Default |
Extra |
+-------+-----------------------+------+-----+---------
+-------+
| c22 | decimal(5,4) unsigned | YES | | NULL
| |
+-------+-----------------------+------+-----+---------
+-------+
1 row in set (0.01 sec)

GaussDB output:
m_db=# CREATE VIEW v22 AS SELECT b'101' /
b'101' c22;
CREATE VIEW
m_db=# DESC v22;
 Field | Type | Null | Key | Default | Extra
-------+--------------+------+-----+---------+-------
 c22 | decimal(5,4) | YES | | |
(1 row)

Table 3-24 Differences in operator combinations

Example of Operator
Combination

MySQL GaussD
B

Description

SELECT 1 LIKE 3 & 1; Not
support
ed

Support
ed

The right operand of LIKE
cannot be an expression
consisting of bitwise operators.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 204

Example of Operator
Combination

MySQL GaussD
B

Description

SELECT 1 LIKE 1 +1; Not
support
ed

Support
ed

The right operand of LIKE
cannot be an expression
consisting of arithmetic
operators.

SELECT 1 LIKE NOT 0; Not
support
ed

Support
ed

The right operand of LIKE can
only be an expression consisting
of unary operators (such as +, -,
or ! but except NOT) or
parentheses.

SELECT 1 BETWEEN 1
AND 2 BETWEEN 2
AND 3;

Right-
to-left
combina
tion

Left-to-
right
combina
tion

It is recommended that
parentheses be added to specify
the priority.

SELECT 2 BETWEEN
1=1 AND 3;

Not
support
ed

Support
ed

The second operand of
BETWEEN cannot be an
expression consisting of
comparison operators.

SELECT 0 LIKE 0
BETWEEN 1 AND 2;

Not
support
ed

Support
ed

The first operand of BETWEEN
cannot be an expression
consisting of pattern matching
operators.

SELECT 1 IN (1)
BETWEEN 0 AND 3;

Not
support
ed

Support
ed

The first operand of BETWEEN
cannot be an expression
consisting of IN operators.

SELECT 1 IN (1) IN (1); Not
support
ed

Support
ed

The second left operand of the
IN expression cannot be an
expression consisting of INs.

SELECT ! NOT 1; Not
support
ed

Support
ed

The operand of ! can only be an
expression consisting of unary
operators (such as +, -, or ! but
except NOT) or parentheses.

NO TE

Combinations of operators that are supported in GaussDB but not supported in MySQL are
not recommended. You are advised to combine operators according to the rules in MySQL.

Index Differences
● Currently, GaussDB supports only UB-tree and B-tree indexes.
● For fuzzy match (LIKE operator), the default index created can be used in

MySQL, but cannot be used in GaussDB. You need to use the following syntax
to specify opclass to, for example, text_pattern_ops, so that LIKE operators
can be used as indexes:

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 205

CREATE INDEX indexname ON tablename(col [opclass]);

● In the B-tree/UB-tree index scenario, the original logic of the native GaussDB
is retained. That is, index scan supports comparison of types in the same
operator family, but does not support other index types currently.

● In the operation scenarios involving index column type and constant type, the
conditions that indexes of a WHERE clause are supported in GaussDB is
different from those in MySQL, as shown in the following table. For example,
GaussDB does not support indexes in the following statement:
create table t(_int int);
create index idx on t(_int) using BTREE;
select * from t where _int > 2.0;

NO TE

In the operation scenarios involving index column type and constant type in the
WHERE clause, you can use the cast function to convert the constant type to the
column type for indexing.
select * from t where _int > cast(2.0 as signed);

Table 3-25 Differences in index support

Index Column
Type

Constant Type GaussDB MySQL

Integer Integer Yes Yes

Floating-point Floating-point Yes Yes

Fixed-point Fixed-point Yes Yes

String String Yes Yes

Binary Binary Yes Yes

Time with date Time with date Yes Yes

TIME TIME Yes Yes

Time with date Type that can be
converted to
time type with
date (for
example,
integers such as
20231130)

Yes Yes

Time with date TIME Yes Yes

TIME Constants that
can be converted
to the TIME type
(for example,
integers such as
203008)

Yes Yes

Floating-point Integer Yes Yes

Floating-point Fixed-point Yes Yes

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 206

Index Column
Type

Constant Type GaussDB MySQL

Floating-point String Yes Yes

Floating-point Binary Yes Yes

Floating-point Time with date Yes Yes

Floating-point TIME Yes Yes

Fixed-point Integer Yes Yes

String Time with date Yes No

String TIME Yes No

Binary String Yes Yes

Binary Time with date Yes No

Binary TIME Yes No

Integer Floating-point No Yes

Integer Fixed-point No Yes

Integer String No Yes

Integer Binary No Yes

Integer Time with date No Yes

Integer TIME No Yes

Fixed-point Floating-point No Yes

Fixed-point String No Yes

Fixed-point Binary No Yes

Fixed-point Time with date No Yes

Fixed-point TIME No Yes

String Binary No Yes

Time with date Integer (that
cannot be
converted to the
time type with
date)

No Yes

Time with date Floating-point
(that cannot be
converted to the
time type with
date)

No Yes

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 207

Index Column
Type

Constant Type GaussDB MySQL

Time with date Fixed-point (that
cannot be
converted to the
time type with
date)

No Yes

TIME Integer (that
cannot be
converted to the
TIME type)

No Yes

TIME Character string
(that cannot be
converted to the
TIME type)

No Yes

TIME Binary (that
cannot be
converted to the
TIME type)

No Yes

TIME Time with date No Yes

SET/ENUM String No Yes

SET/ENUM Integer No Yes

SET/ENUM Floating-point No Yes

SET/ENUM Time No Yes

Table 3-26 Whether index use is supported

Index Column
Type

Constant Type Use Index or
Not

MySQL

String Integer No No

String Floating-point No No

String Fixed-point No No

Binary Integer No No

Binary Floating-point No No

Binary Fixed-point No No

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 208

Index Column
Type

Constant Type Use Index or
Not

MySQL

Time with date Character string
(that cannot be
converted to the
time type with
date)

No No

Time with date Binary (that
cannot be
converted to the
time type with
date)

No No

TIME Floating-point
(that cannot be
converted to the
TIME type)

No No

TIME Fixed-point (that
cannot be
converted to the
TIME type)

No No

3.5 Character Sets
GaussDB allows you to specify the following character sets for databases,
schemas, tables, or columns.

Table 3-27 Character sets

No. MySQL GaussDB

1 utf8mb4 Supported

2 utf8 Supported

3 gbk Supported

4 gb18030 Supported

5 binary Supported

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 209

NO TE

● utf8 and utf8mb4 refer to the same character set in GaussDB. The maximum code
length is 4 bytes. If the current character set is utf8 and the collation is set to
utf8mb4_bin, utf8mb4_general_ci, utf8mb4_unicode_ci, or utf8mb4_0900_ai_ci (for
example, by running select _utf8'a' collate utf8mb4_bin), MySQL reports an error but
GaussDB does not report an error. The difference also exists when the character set is
utf8mb4 and the collation is set to utf8_bin, utf8_general_ci, or utf8_unicode_ci.

● The lexical syntax is parsed based on byte streams. If a multi-byte character contains
code that is consistent with symbols such as '\', '\'', and '\\', the behavior of the multi-
byte character is inconsistent with that in MySQL. In this case, you are advised to disable
the escape character function temporarily.

● Currently, GaussDB does not perform strict encoding logic verification on invalid
characters that do not belong to the current character set. As a result, such invalid
characters may be successfully entered. However, an error is reported during verification
in MySQL.

3.6 Collation Rules
GaussDB allows you to specify the following collation rules for schemas, tables, or
columns.

NO TE

Differences in collation rules:

● Currently, only the character string type and some binary types support the specified
collation rules. You can check whether the typcollation attribute of a type in the pg_type
system catalog is not 0 to determine whether the type supports the collation. The
collation can be specified for all types in MySQL. However, collation rules are
meaningless except those for character strings and binary types.

● The current collation rules (except binary) can be specified only when the corresponding
character set is the same as the database-level character set. In GaussDB, the character
set must be the same as the database character set, and multiple character sets cannot
be used together in a table.

● The default collation of the utf8mb4 character set is utf8mb4_general_ci, which is the
same as that in MySQL 5.7.

● To use the latin1 collation, you need to set the compatibility parameter
m_format_dev_version to 's2'.

Table 3-28 Collation rules

No. MySQL GaussDB

1 utf8mb4_general_ci Supported

2 utf8mb4_unicode_ci Supported

3 utf8mb4_bin Supported

4 gbk_chinese_ci Supported

5 gbk_bin Supported

6 gb18030_chinese_ci Supported

7 gb18030_bin Supported

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 210

No. MySQL GaussDB

8 binary Supported

9 utf8mb4_0900_ai_ci Supported

10 utf8_general_ci Supported

11 utf8_bin Supported

12 utf8_unicode_ci Supported.

13 latin1_swedish_ci Supported.

14 latin1_bin Supported.

3.7 Transactions
GaussDB is compatible with MySQL transactions, but there are some differences.
This section describes transaction-related differences in GaussDB M-compatible
databases.

Default Transaction Isolation Levels
The default isolation level of an M-compatible database is READ COMMITTED,
and that of MySQL is REPEATABLE-READ.

-- View the current transaction isolation level.
m_db=# SHOW transaction_isolation;

Sub-transactions
In an M-compatible database, SAVEPOINT is used to create a savepoint (sub-
transaction) in the current transaction, and ROLLBACK TO SAVEPOINT is used to
roll back to a savepoint (sub-transaction). After the sub-transaction is rolled back,
the parent transaction can continue to run, the rollback of a sub-transaction does
not affect the transaction status of the parent transaction.

No savepoint (sub-transaction) can be created in MySQL.

Nested Transactions
A nested transaction refers to a new transaction started in a transaction block.

In an M-compatible database, if a new transaction is started in a normal
transaction block, a warning is displayed indicating that an ongoing transaction
exists and the start command is ignored. If a new transaction is started in an
abnormal transaction block, an error is reported. The transaction can be executed
only after ROLLBACK/COMMIT is executed. If ROLLBACK/COMMIT is executed,
the previous statement is rolled back.

In MySQL, if a new transaction is started in a normal transaction block, the
previous transaction is committed and then the new transaction is started. If a
new transaction is started in an abnormal transaction block, the error is ignored,

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 211

and the previous error-free statement is committed and the new transaction is
started.

-- In an M-compatible database, if a new transaction is started in a normal transaction block, a warning is
generated and the transaction is ignored.
m_db=# DROP TABLE IF EXISTS test_t;
m_db=# CREATE TABLE test_t(a int, b int);
m_db=# BEGIN;
m_db=# INSERT INTO test_t values(1, 2);
m_db=# BEGIN; -- The warning "There is already a transaction in progress" is displayed.
m_db=# SELECT * FROM test_t ORDER BY 1;
m_db=# COMMIT;

-- In an M-compatible database, if a new transaction is started in an abnormal transaction block, an error is
reported. The transaction can be executed only after ROLLBACK/COMMIT is executed.
m_db=# BEGIN;
m_db=# ERROR sql; -- Error statement.
m_db=# BEGIN; -- An error is reported.
m_db=# COMMIT; -- It can be executed only after ROLLBACK/COMMIT is executed.

Statements Committed Implicitly

An M-compatible database uses GaussDB for storage and inherits the GaussDB
transaction mechanism. If a DDL or DCL statement is executed in a transaction,
the transaction is not automatically committed.

In MySQL, if DDL, DCL, management-related, or lock-related statements are
executed, the transaction is automatically committed.

-- In M-compatible database, table creation and GUC parameter setting support rollback.
m_db=# DROP TABLE IF EXISTS test_table_rollback;
m_db=# BEGIN;
m_db=# CREATE TABLE test_table_rollback(a int, b int);
m_db=# \d test_table_rollback;
m_db=# ROLLBACK;
The m_db=# \d test_table_rollback; -- This table does not exist.

Differences in SET TRANSACTION

In an M-compatible database, if SET TRANSACTION is used to set the isolation
level or transaction access mode for multiple times, only the last one takes effect.
Transaction features can be separated by spaces and commas (,).

In MySQL, SET TRANSACTION cannot be used to set the isolation level or
transaction access mode for multiple times. Transaction features can only be
separated by commas (,).

Table 3-29 Differences in SET TRANSACTION

No. Syntax Function Difference

1 SET
TRANSACTIO
N

Sets transactions. In an M-compatible database, SET
TRANSACTION takes effect in
session-level transactions. In MySQL,
SET TRANSACTION takes effect at
the next transaction.

2 SET SESSION
TRANSACTIO
N

Sets session-level
transactions.

-

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 212

No. Syntax Function Difference

3 SET GLOBAL
TRANSACTIO
N

Sets global
session-level
transactions. This
feature applies to
subsequent
sessions and has
no impact on the
current session.

In an M-compatible database,
GLOBAL takes effect in transactions
at the global session level and
applies only to the current database
instance.
In MySQL, this feature takes effect in
all databases.

-- SET TRANSACTION takes effect in session-level transactions.
m_db=# SET TRANSACTION ISOLATION LEVEL READ COMMITTED READ WRITE;
m_db=# SHOW transaction_isolation;
m_db=# SHOW transaction_read_only;
-- In an M-compatible database, if the isolation level or transaction access mode is set for multiple times,
only the last one takes effect.
m_db=# SET SESSION TRANSACTION ISOLATION LEVEL READ COMMITTED, ISOLATION LEVEL
REPEATABLE READ, READ WRITE, READ ONLY;
m_db=# SHOW transaction_isolation; -- repeatable read
m_db=# SHOW transaction_read_only; -- on

Differences in START TRANSACTION

In an M-compatible database, when START TRANSACTION is used to start a
transaction, the isolation level can be set. If the isolation level or transaction
access mode is set for multiple times, only the last one takes effect. In the current
version, consistency snapshot cannot be enabled immediately. Transaction features
can be separated by spaces and commas (,).

In MySQL, if START TRANSACTION is used to start a transaction, the isolation level
cannot be set and the transaction access mode cannot be set for multiple times.
Transaction features can only be separated by commas (,).

-- Start a transaction and set the isolation level.
m_db=# START TRANSACTION ISOLATION LEVEL READ COMMITTED;
m_db=# COMMIT;
-- Set the access mode for multiple times.
m_db=# START TRANSACTION READ ONLY, READ WRITE;
m_db=# COMMIT;

Transaction-related GUC Parameters

Table 3-30 Differences in transaction-related GUC parameters

No. GUC
Paramete
r

Function Difference

1 autocomm
it

Sets the
automatic
transaction
commit
mode.

-

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 213

No. GUC
Paramete
r

Function Difference

2 transactio
n_isolation

Sets the
isolation
level of the
current
transaction
in GaussDB.
Sets the
isolation
level of a
session-
level
transaction
in MySQL.

● In GaussDB, you can only change the
isolation level of the current transaction by
running the SET command. To change the
session-level isolation level, use
default_transaction_isolation. In MySQL,
you can run the SET command to change
the isolation level of a session-level
transaction.

● The supported range is different.
MySQL supports the following isolation
levels, which are case-insensitive but
space-sensitive:
– READ-COMMITTED
– READ-UNCOMMITTED
– REPEATABLE-READ
– SERIALIZABLE
GaussDB supports the following isolation
levels, which are case-sensitive and space-
sensitive:
– read committed
– read uncommitted
– repeatable read
– serializable
– default (The level is set to be the same

as the default isolation level in the
session.)

– If m_format_dev_version is set to 's2',
the isolation levels of MySQL can be
set.

● In GaussDB, the value of
transaction_isolation of a new transaction
is initialized to the value of
default_transaction_isolation.

● When m_format_dev_version is set to 's2':
– You can set the features of the next

transaction by running set
@@transaction_isolation = value; set
transaction isolation level value.

– You can modify the features of a
session-level transaction by running set
[local|session|@@session.]
transaction_isolation = value.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 214

No. GUC
Paramete
r

Function Difference

– The features of the next transaction
cannot be used within the current
transaction. If an error is reported for
an implicit transaction, that is, a single
SQL statement, the features of the next
transaction are retained.

3 tx_isolatio
n

Sets the
transaction
isolation
level.
tx_isolatio
n and
transaction
_isolation
are
synonyms.

This parameter can be queried but cannot be
modified in GaussDB.

4 default_tr
ansaction_
isolation

Sets the
transaction
isolation
level.

In GaussDB, the SET command is used to
change the isolation level a session-level
transaction.
MySQL does not support this system
parameter.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 215

No. GUC
Paramete
r

Function Difference

5 transactio
n_read_on
ly

In GaussDB,
this
parameter
is used to
set the
access
mode of
the current
transaction.
In MySQL,
this
parameter
is used to
set the
access
mode of
session-
level
transactions
.

● In GaussDB, only the access mode of the
current transaction can be changed by
using the SET command. If you want to
change the access mode of a session-level
transaction, you can use
default_transaction_read_only.
In MySQL, you can run the SET command
to change the isolation level of a session-
level transaction.

● In GaussDB, the value of
transaction_read_only of a new
transaction is initialized to the value of
default_transaction_read_only.

● When m_format_dev_version is set to 's2':
– You can set the next transaction feature

by running set
@@transaction_read_only = value; set
transaction {read write | read only}.

– You can modify the features of a
session-level transaction by running set
[local|session|@@session.]
transaction_read_only = value.

– The features of the next transaction
cannot be used within the current
transaction. If an error is reported for
an implicit transaction, that is, a single
SQL statement, the features of the next
transaction are retained.

6 tx_read_o
nly

Sets the
access
mode of a
transaction.
tx_read_on
ly and
transaction
_read_only
are
synonyms.

This parameter can be queried but cannot be
modified in GaussDB.

7 default_tr
ansaction_
read_only

Sets the
access
mode of a
transaction.

In GaussDB, the SET command is used to
change the access mode of a session-level
transaction. MySQL does not support this
system parameter.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 216

3.8 SQL
GaussDB is compatible with most MySQL syntax, but there are some differences.
This section describes the MySQL syntax supported by GaussDB.

● Some keywords can be used as identifiers in MySQL, but cannot or are
restricted to be identifiers in M-compatible mode, as listed in Table 3-31.

Table 3-31 Keywords restricted to be identifiers

Keyword Type Keyword Constraint

Reserved (Type or
function is allowed.)

COLLATION and
COMPACT

They cannot be used as
identifiers in other
databases except for
functions and variables.

Non-reserved (Type or
function is not
allowed.)

BIT, BOOLEAN,
COALESCE, DATE,
NATIONAL, NCHAR,
NONE, NUMBER, TEXT,
TIME, TIMESTAMP, and
TIMESTAMPDIFF

They cannot be used as
identifiers for functions
or variables.

Reserved ANY, ARRAY, BUCKETS,
DO, END, LESS,
MODIFY, OFFSET, ONLY,
RETURNING, SOME,
and USER

They cannot be used as
identifiers in any
database.

● The GaussDB optimizer is different from the MySQL optimizer. Due to the

difference in the execution plans generated by optimizers, the GaussDB
behavior may be inconsistent with the MySQL behavior, but it does not affect
the service data result.
For example, if the optimizer optimizes constants in SQL statements, constant
expressions, such as those with the XOR operator, are calculated in advance.
For example, in the following scenario, when GaussDB calculates col1 and
uses col1 for WHERE comparison, the cast function is called and two
WARNING records are generated.
MySQL calls the cast function when calculating col1. During WHERE
comparison, the calculated value is used for comparison. As a result, a
WARNING record is generated.
-- Behavior in GaussDB:
m_db=# select * from (select cast('abc' as decimal) as col1) t1 where col1=0;
WARNING: Truncated incorrect DECIMAL value: 'abc'
WARNING: Truncated incorrect DECIMAL value: 'abc'
CONTEXT: referenced column: col1
 col1

 0
(1 row)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 217

m_db=# explain verbose select * from (select cast('abc' as decimal) as col1) t1 where col1=0;
WARNING: Truncated incorrect DECIMAL value: 'abc'
WARNING: Truncated incorrect DECIMAL value: 'abc'
CONTEXT: referenced column: col1
 QUERY PLAN
--
 Result (cost=0.00..0.01 rows=1 width=0)
 Output: 0::decimal
(2 rows)

-- Behavior in MySQL:
mysql> select * from (select cast('abc' as decimal) as col1) t1 where col1=0;
+------+
| col1 |
+------+
| 0 |
+------+
1 row in set, 1 warning (0.00 sec)

mysql> show warnings;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Truncated incorrect DECIMAL value: 'abc' |
+---------+------+--+
1 row in set (0.00 sec)

mysql> explain select * from (select cast('abc' as decimal) as col1) t1 where col1=0;
+----+-------------+------------+------------+--------+---------------+------+---------+------+------+----------
+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered |
Extra |
+----+-------------+------------+------------+--------+---------------+------+---------+------+------+----------
+----------------+
| 1 | PRIMARY | <derived2> | NULL | system | NULL | NULL | NULL | NULL | 1 |
100.00 | NULL |
| 2 | DERIVED | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL |
NULL | No tables used |
+----+-------------+------------+------------+--------+---------------+------+---------+------+------+----------
+----------------+
2 rows in set, 2 warnings (0.01 sec)

mysql> show warnings;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1292 | Truncated incorrect DECIMAL value: 'abc' |
| Note | 1003 | /* select#1 */ select '0' AS `col1` from dual where ('0' = 0) |
+---------+------+---+
2 rows in set (0.00 sec)

3.8.1 Keywords
The constraint differences are as follows:

● In M-compatible mode, keywords are reserved keywords. In MySQL, keywords
are non-reserved keywords. In M-compatible mode, keywords cannot be used
as table names, column names, column aliases, AS column aliases, AS table
aliases, table aliases, function names, or variable names. In MySQL, keywords
can be used as these names or aliases.

● In M-compatible mode, keywords are non-reserved keywords. In MySQL,
keywords are reserved keywords. In M-compatible mode, keywords can be
used as table names, column names, column aliases, AS column aliases, AS
table aliases, table aliases, function names, or variable names. In MySQL,
keywords cannot be used as these names or aliases.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 218

● In M-compatible mode, keywords are reserved keywords (functions or types).
In MySQL, keywords are reserved keywords. In M-compatible mode, keywords
can be used as column aliases, AS column aliases, function names, or variable
names. In MySQL, keywords cannot be used as these names or aliases.

● In M-compatible mode, keywords are reserved keywords (functions or types).
In MySQL, keywords are non-reserved keywords. In M-compatible mode,
keywords cannot be used as table aliases, column names, AS table aliases, or
table aliases. In MySQL, keywords can be used as these names or aliases.

● In M-compatible mode, keywords are non-reserved keywords (cannot be
functions or types). In MySQL, keywords are reserved keywords. In M-
compatible mode, keywords can be used as table aliases, column names,
column aliases, AS column aliases, AS table aliases, table aliases, or variable
names. In MySQL, keywords cannot be used as these names or aliases.

● In M-compatible mode, keywords are non-reserved keywords (cannot be
functions or types). In MySQL, keywords are non-reserved keywords. In M-
compatible mode, keywords cannot be used as function names. In MySQL,
keywords can be used as these names or aliases.

NO TE

Among non-reserved keywords, reserved keywords (functions or types), and non-
reserved keywords (not functions or types) in M-compatible mode, the following
keywords cannot be used as column aliases:
BETWEEN, BIGINT, BLOB, CHAR, CHARACTER, CROSS, DEC, DECIMAL, DIV, DOUBLE,
EXISTS, FLOAT, FLOAT4, FLOAT8, GROUPING, INNER, INOUT, INT, INT1, INT2, INT3,
INT4, INT8, INTEGER, JOIN, LEFT, LIKE, LONGBLOB, LONGTEXT, MEDIUMBLOB,
MEDIUMINT, MEDIUMTEXT, MOD, NATURAL, NUMERIC, OUT, OUTER, PRECISION,
REAL, RIGHT, ROW, ROW_NUMBER, SIGNED, SMALLINT, SOUNDS, TINYBLOB, TINYINT,
TINYTEXT, VALUES, VARCHAR, VARYING, and WITHOUT.
SIGNED and WITHOUT can be used as column aliases in MySQL.

3.8.2 Identifiers
Differences in identifiers in M-compatible mode are as follows:

● In GaussDB, unquoted identifiers cannot start with a dollar sign ($). In MySQL
unquoted identifiers can start with a dollar sign ($).

● GaussDB unquoted identifiers support case-sensitive database objects.
● GaussDB identifiers support extended characters from U+0080 to U+00FF.

MySQL identifiers support extended characters from U+0080 to U+FFFF.
● As for unquoted identifier, a table that starts with a digit and ends with an e

or E as the identifier cannot be created in GaussDB. For example:
-- GaussDB reports an error indicating that this operation is not supported. MySQL supports this
operation.
m_db=# CREATE TABLE 23e(c1 int);
ERROR: syntax error at or near "23"
LINE 1: CREATE TABLE 23e(c1 int);
 ^
m_db=# CREATE TABLE t1(23E int);
ERROR: syntax error at or near "23"
LINE 1: CREATE TABLE t1(23E int);
 ^

● As for quoted identifiers, tables whose column names contain only digits or
scientific computing cannot be directly used in GaussDB. You need to use
them in quotes. This rule also applies to the dot operator (.) scenarios. For
example:

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 219

-- Create a table whose column names contain only numbers or scientific computing.
m_db=# CREATE TABLE t1(`123` int, `1e3` int, `1e` int);
CREATE TABLE

-- Insert data into the table.
m_db=# INSERT INTO t1 VALUES(7, 8, 9);
INSERT 0 1

-- The result is not as expected, but is the same as that in MySQL.
m_db=# SELECT 123 FROM t1;
 ?column?

 123
(1 row)

-- The result is not as expected, but is the same as that in MySQL.
m_db=# SELECT 1e3 FROM t1;
 ?column?

 1000
(1 row)

-- The result is not as expected and is not the same as that in MySQL.
m_db=# SELECT 1e FROM t1;
 e

 1
(1 row)

-- The correct way to use is as follows:
m_db=# SELECT `123` FROM t1;
 123

 7
(1 row)

m_db=# SELECT `1e3` FROM t1;
 1e3

 8
(1 row)

m_db=# SELECT `1e` FROM t1;
 1e

 9
(1 row)

-- Dot operator scenarios are not supported by GaussDB but supported by MySQL.
m_db=# SELECT t1.123 FROM t1;
ERROR: syntax error at or near ".123"
LINE 1: SELECT t1.123 FROM t1;
 ^
m_db=# SELECT t1.1e3 FROM t1;
ERROR: syntax error at or near "1e3"
LINE 1: SELECT t1.1e3 FROM t1;
 ^
m_db=# SELECT t1.1e FROM t1;
ERROR: syntax error at or near "1"
LINE 1: SELECT t1.1e FROM t1;
 ^
-- The correct way to use in dot operator scenarios is as follows:
m_db=# SELECT t1.`123` FROM t1;
 123

 7
(1 row)

m_db=# SELECT t1.`1e3` FROM t1;

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 220

 1e3

 8
(1 row)

m_db=# SELECT t1.`1e` FROM t1;
 1e

 9
(1 row)

m_db=# DROP TABLE t1;
DROP TABLE

● In GaussDB, the partition name is case-sensitive when it is enclosed in double
quotation marks (SQL_MODE must be set to ANSI_QUOTES) or backquotes,
but in MySQL the partition name is case-insensitive.

● The identifier length is limited to 64 characters in MySQL, but is limited to 63
characters in GaussDB.

● GaussDB does not support executable comments.

3.8.3 DDL

Table 3-32 DDL syntax compatibility

Description Syntax Description Difference

Create primary keys,
UNIQUE indexes, and
foreign keys during
table creation and
modification.

ALTER TABLE and
CREATE TABLE

● GaussDB: When the table
joined with the constraint
is Ustore and USING
BTREE is specified in the
SQL statement, the
underlying index is created
as UB-tree.

● GaussDB: Foreign keys can
be used as partition keys.

● The index name,
constraint name, and key
name are unique in a
schema in GaussDB and
unique in a table in
MySQL.

● The maximum number of
columns supported by the
primary keys of MySQL is
different from those of
GaussDB.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 221

Description Syntax Description Difference

Support auto-
increment columns.

ALTER TABLE and
CREATE TABLE

● It is recommended that an
auto-increment column in
GaussDB be the first
column of an index.
Otherwise, an alarm is
generated during table
creation. The auto-
increment column in
MySQL must be the first
column of the index.
Otherwise, an error is
reported during table
creation. In GaussDB, an
error occurs when some
operations (such as ALTER
TABLE EXCHANGE
PARTITION) are
performed on a table that
contains auto-increment
columns.

● In GaussDB, for
AUTO_INCREMENT =
value, value must be a
positive number less than
2^127 in GaussDB. In
MySQL, value can be 0.

● In GaussDB, an error
occurs if the auto-
increment continues after
an auto-increment value
reaches the maximum
value of a column data
type. In MySQL, errors or
warnings may be
generated during auto-
increment, and sometimes
auto-increment continues
until the maximum value
is reached.

● GaussDB does not support
the
innodb_autoinc_lock_mod
e system variable, but
when its GUC parameter
auto_increment_cache is
set to 0, the behavior of
inserting auto-increment
columns in batches is
similar to that when the

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 222

Description Syntax Description Difference

MySQL system variable
innodb_autoinc_lock_mod
e is set to 1.

● In GaussDB, when 0s,
NULLs, and definite values
are imported or batch
inserted into auto-
increment columns, the
auto-increment values
inserted after an error
occurs in GaussDB may
not be the same as those
in MySQL.
– The

auto_increment_cache
parameter is provided
to control the number
of reserved auto-
increment values.

● In GaussDB, when auto-
increment is triggered by
parallel import or
insertion of auto-
increment columns, the
cache value reserved for
each parallel thread is
used only in the thread. If
the cache value is not
used up, the values of
auto-increment columns
in the table are
discontinuous. The auto-
increment value generated
by parallel insertion
cannot be guaranteed to
be the same as that
generated in MySQL.

● In GaussDB, when auto-
increment columns are
batch inserted into a local
temporary table, no auto-
increment value is
reserved. In normal
scenarios, auto-increment
values are not
discontinuous. In MySQL,
the auto-increment result
of an auto-increment
column in a temporary

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 223

Description Syntax Description Difference

table is the same as that
in an ordinary table.

● The SERIAL data type of
GaussDB is an original
auto-increment column,
which is different from the
AUTO_INCREMENT
column. The SERIAL data
type of MySQL is the
AUTO_INCREMENT
column.

● GaussDB does not allow
the value of
auto_increment_offset to
be greater than that of
auto_increment_increme
nt. Otherwise, an error
occurs. MySQL allows it
and states that
auto_increment_offset
will be ignored.

● If a table has a primary
key or index, the sequence
in which the ALTER TABLE
command rewrites table
data may be different
from that in MySQL.
GaussDB rewrites table
data based on the table
data storage sequence,
while MySQL rewrites
table data based on the
primary key or index
sequence. As a result, the
auto-increment sequence
may be different.

● When the ALTER TABLE
command in GaussDB is
used to add or modify
auto-increment columns,
the number of auto-
increment values reserved
for the first time is the
number of rows in the
table statistics. The
number of rows in the
statistics may not be the
same as that in MySQL.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 224

Description Syntax Description Difference

● The return value of the
last_insert_id function in
GaussDB is a 128-bit
integer.

● When GaussDB performs
auto-increment in a
trigger or user-defined
function, the return value
of last_insert_id is
updated. MySQL does not
update it.

● If the values of the GUC
parameters
auto_increment_offset
and
auto_increment_increme
nt in GaussDB are out of
range, an error occurs.
MySQL automatically
changes the value to a
boundary value.

● If sql_mode is set to
no_auto_value_on_zero,
the auto-increment
columns of the table are
not subject to NOT NULL
constraints. In GaussDB
and MySQL, when the
value of an auto-
increment column is not
specified, NULL will be
inserted into the auto-
increment column, but
auto-increment is
triggered for the former
and not triggered for the
latter.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 225

Description Syntax Description Difference

Support prefix
indexes.

CREATE INDEX, ALTER
TABLE, and CREATE
TABLE

● GaussDB: The prefix
length cannot exceed
2676. The actual length of
the key value is restricted
by the internal page. If a
column contains multi-
byte characters or an
index has multiple keys,
an error may be reported
when the index line length
exceeds the threshold.

● GaussDB: The primary key
index does not support
prefix keys. The prefix
length cannot be specified
when a primary key is
created or added.

Specify character sets
and collation rules.

ALTER SCHEMA, ALTER
TABLE, CREATE
SCHEMA, and CREATE
TABLE

● When you specify a
database-level character
set, except binary
character sets, the
character set of a new
database or schema
cannot be different from
that specified by
server_encoding of the
database.

● When you specify a table-
level or column-level
character set and
collation, MySQL allows
you to specify a character
set and collation that are
different from the
database-level character
set and collation. In
GaussDB, the table-level
and column-level
character sets and
collations support only the
binary character sets and
collations or can be the
same as the database-
level character sets and
collations.

● If the character set or
collation is specified
repeatedly, only the last
one takes effect.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 226

Description Syntax Description Difference

Add columns before
the first column of a
table or after a
specified column
during table
modification.

ALTER TABLE -

Alter the column
name/definition.

ALTER TABLE ● Currently, the DROP
INDEX, DROP KEY, or
ORDER BY is not
supported.

● When ALTER TABLE is
used to add a column, if
the specified field in
MySQL is NOT NULL, the
NULL value is converted
to the default value of the
corresponding type and
inserted into the column.
GaussDB checks the NULL
value.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 227

Description Syntax Description Difference

Create a partitioned
table.

CREATE TABLE
PARTITION and CREATE
TABLE SUBPARTITION

● MySQL supports
expressions but does not
support multiple partition
keys in the following
scenarios:
– The LIST/RANGE

partitioning policy is
used and the
COLUMNS keyword is
not specified.

– The hash partitioning
policy is used.

● MySQL does not support
expressions and supports
multiple partition keys in
the following scenarios:
– The LIST/RANGE

partitioning policy is
used and the
COLUMNS keyword is
specified.

– The KEY partitioning
policy is used.

● In GaussDB, expressions
cannot be used as
partition keys.

● GaussDB supports
multiple partition keys
only when the LIST or
RANGE partitioning policy
is used and subpartitions
are not specified.

● In GaussDB partitioned
tables, virtual generated
columns cannot be used
as partition keys.

Specify table-level
and column-level
comments during
table creation and
modification.

CREATE TABLE and
ALTER TABLE

-

Specify index-level
comments during
index creation.

CREATE INDEX -

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 228

Description Syntax Description Difference

Exchange the
partition data of an
ordinary table and a
partitioned table.

ALTER TABLE
PARTITION

Differences in ALTER TABLE
EXCHANGE PARTITION:
● For auto-increment

columns, after the ALTER
EXCHANGE PARTITION is
executed in MySQL, the
auto-increment columns
are reset. In GaussDB, the
auto-increment columns
are not reset, and the
auto-increment columns
increase based on the old
auto-increment value.

● If MySQL tables or
partitions use tablespaces,
data in partitions and
ordinary tables cannot be
exchanged. If GaussDB
tables or partitions use
different tablespaces, data
in partitions and ordinary
tables can still be
exchanged.

● MySQL does not verify the
default values of columns.
Therefore, data in
partitions and ordinary
tables can be exchanged
even if the default values
are different. GaussDB
verifies the default values.
If the default values are
different, data in
partitions and ordinary
tables cannot be
exchanged.

● After the DROP COLUMN
operation is performed on
a partitioned table or an
ordinary table in MySQL,
if the table structure is
still consistent, data can
be exchanged between
partitions and ordinary
tables. In GaussDB, data
can be exchanged
between partitions and
ordinary tables only when
the deleted columns of

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 229

Description Syntax Description Difference

ordinary tables and
partitioned tables are
strictly aligned.

● MySQL and GaussDB use
different hash algorithms.
Therefore, data stored in
the same hash partition
may be inconsistent. As a
result, the exchanged data
may also be inconsistent.

● MySQL partitioned tables
do not support foreign
keys. If an ordinary table
contains foreign keys or
other tables reference
foreign keys of an
ordinary table, data in
partitions and ordinary
tables cannot be
exchanged. GaussDB
partitioned tables support
foreign keys. If the foreign
key constraints of two
tables are the same, data
in partitions and ordinary
tables can be exchanged.
If a GaussDB partitioned
table does not contain
foreign keys, an ordinary
table is referenced by
other tables, and the
partitioned table is the
same as the ordinary
table, data in the
partitioned table can be
exchanged with that in
the ordinary table.

Modify the partition
key information of a
partitioned table.

ALTER TABLE MySQL allows you to modify
the partition key information
of a partitioned table, but
GaussDB does not.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 230

Description Syntax Description Difference

Support the CREATE
TABLE... LIKE syntax.

CREATE TABLE ... LIKE ● In versions earlier than
MySQL 8.0.16, CHECK
constraints are parsed but
their functions are
ignored. In this case,
CHECK constraints are not
replicated. GaussDB
supports replication of
CHECK constraints.

● When a table is created,
all primary key constraint
names in MySQL are fixed
to PRIMARY KEY.
GaussDB does not support
replication of primary key
constraint names.

● When a table is created,
MySQL supports
replication of unique key
constraint names, but
GaussDB does not.

● When a table is created,
MySQL versions earlier
than 8.0.16 do not have
CHECK constraint
information, but GaussDB
supports replication of
CHECK constraint names.

● When a table is created,
MySQL supports
replication of index
names, but GaussDB does
not.

● When a table is created
across sql_mode, MySQL is
controlled by the loose
mode and strict mode.
The strict mode may
become invalid in
GaussDB.
For example, if the source
table has the default value
"0000-00-00", GaussDB
can create a table that
contains the default value
"0000-00-00" in
"no_zero_date" strict
mode, which means that
the strict mode is invalid.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 231

Description Syntax Description Difference

MySQL fails to create the
table because it is
controlled by the strict
mode.

Create a partition. ALTER TABLE [IF EXISTS]
{ table_name [*] | ONLY
table_name | ONLY
(table_name)} add_clause;
add_clause:
ADD
{{partition_less_than_item |
partition_start_end_item |
partition_list_item} |
PARTITION({partition_less_than
_item |
partition_start_end_item |
partition_list_item})}

The syntax of the original
partitioned table is retained.
The following syntax cannot
be used to add multiple
partitions:
ALTER TABLE table_name ADD
PARTITION (partition_definition1,
partition_definition1,…);

Only the original syntax for
adding multiple partitions is
supported.
ALTER TABLE table_name ADD
PARTITION (partition_definition1),
ADD PARTITION
(partition_definition2[y1]), …;

Truncate a partition. ALTER TABLE [IF EXISTS]
table_name
 truncate_clause;

For truncate_clause, the
supported subitems are
different:
● M-compatible mode:

TRUNCATE PARTITION { { ALL |
partition_name [, ...] } | FOR
(partition_value [, ...]) }
[UPDATE GLOBAL INDEX]

● MySQL:
TRUNCATE PARTITION
{partition_names | ALL}

Index name of a
primary key

CREATE TABLE table_name
(col_definitine ,PRIMARY KEY
[index_name] [USING
method] ({ column_name |
(expression) }[ASC | DESC] }
[, ...]) index_parameters
[USING method| COMMENT
'string'])

The index name created after
being specified by a primary
key in GaussDB is the index
name specified by a user. In
MySQL, the index name is
PRIMARY.

Delete dependent
objects.

DROP drop_type name
CASCADE;

In GaussDB, CASCADE needs
to be added to delete
dependent objects. In MySQL,
CASCADE is not required.

The NOT NULL
constraint does not
allow NULL values to
be inserted.

CREATE TABLE t1(id int NOT
NULL DEFAULT 8);
INSERT INTO t1
VALUES(NULL);
INSERT INTO t1 VALUES(1),
(NULL),(2);

In MySQL loose mode, NULL
is converted and data is
successfully inserted. In
MySQL strict mode, NULL
values cannot be inserted.
GaussDB does not support
this feature. NULL values
cannot be inserted in loose
or strict mode.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 232

Description Syntax Description Difference

The CHECK constraint
takes effect.

CREATE TABLE The CREATE TABLE that
contains the CHECK
constraint takes effect in
MySQL 8.0. MySQL 5.7 parses
the syntax but the syntax
does not take effect.
GaussDB synchronizes this
function of MySQL 8.0, and
the GaussDB CHECK
constraint can reference
other columns, but MySQL
cannot.
A maximum of 32767 CHECK
constraints can be added to a
table in GaussDB.

The algorithm and
lock options of an
index do not take
effect.

CREATE INDEX ...
DROP INDEX ...

Currently, the index options
algorithm_option and
lock_option in the CREATE/
DROP INDEX statement in
M-compatible mode are
supported only in syntax. No
error is reported during
creation, but they do not
take effect.

The storage of hash
partitions and level-2
partitions in CREATE
TABLE in GaussDB is
different from that in
MySQL.

CREATE TABLE In GaussDB, the hash
functions used by hash
partitioned tables and level-2
partitioned tables in the
CREATE TABLE statement are
different from those used in
MySQL. Therefore, the
storage of hash partitioned
tables and level-2 partitioned
tables is different from that
in MySQL.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 233

Description Syntax Description Difference

Partitioned table
index

CREATE INDEX GaussDB partitioned table
indexes are classified into
local and global indexes. A
local index is bound to a
specific partition, and a
global index corresponds to
the entire partitioned table.
For details about how to
create local and global
indexes and the default rules,
see "SQL Syntax > SQL
Statement > C > CREATE
INDEX " in Developer Guide.
For example, if a unique
index is created on a non-
partition key, a global index
is created by default.
MySQL does not have global
indexes. In GaussDB, if the
partitioned table index is a
global index, the global index
is not updated by default
when operations such as
DROP, TRUNCATE, and
EXCHANGE are performed on
the table partition. As a
result, the global index
becomes invalid and cannot
be selected in subsequent
statements. To avoid this
problem, you are advised to
explicitly specify the UPDATE
GLOBAL INDEX clause at the
end of the partition syntax or
set the global GUC
parameter
enable_gpi_auto_update to
true (recommended) so that
global indexes can be
automatically updated during
partition operations.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 234

Description Syntax Description Difference

If the table is
partitioned by key in
the CREATE/ALTER
TABLE statement,
algorithms cannot be
specified. Input
parameters of some
partition definition do
not support
expressions.

CREATE TABLE and
ALTER TABLE

GaussDB: If the table is
partitioned by key in the
CREATE/ALTER TABLE
statement, algorithms cannot
be specified.
The syntaxes that do not
support expressions as input
parameters are as follows:
● PARTITION BY HASH()
● PARTITION BY KEY()
● VALUES LESS THAN()

Partitioned tables do
not support
LINEAR/KEY hash.

CREATE TABLE ...
PARTITION ...

GaussDB: Partitioned tables
do not support LINEAR/KEY
hash.

The CHECK and
AUTO_INCREMENT
syntaxes cannot be
used in the same
column.

CREATE TABLE The column using CHECK
does not take effect in
MySQL 5.7. When both
CHECK and
AUTO_INCREMENT are used
on the same column, only
AUTO_INCREMENT takes
effect. However, GaussDB
reports an error.

Delete dependent
tables.

DROP TABLE In GaussDB, CASCADE must
be added to delete
dependent tables. In MySQL,
CASCADE is not required.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 235

Description Syntax Description Difference

Add foreign key
constraints and
modify referencing
columns and
referenced columns
of the foreign key
constraints.

CREATE TABLE and
ALTER TABLE

● In GaussDB, the MATCH
FULL and MATCH SIMPLE
options can be specified
when you are creating a
foreign key. However, if
you specify the MATCH
PARTIAL option, an error
is reported. In MySQL, the
preceding options can be
specified, but will not be
effective. Their behavior
ends up being the same as
that of MATCH SIMPLE.

● In GaussDB, the ON
[UPDATE | DELETE] SET
DEFAULT option can be
specified when you are
creating a foreign key. In
MySQL, if you specify the
ON [UPDATE | DELETE]
SET DEFAULT option
when creating a foreign
key, an error is reported.

● When creating a foreign
key in GaussDB, you must
create a unique index on
the referenced column of
the referenced table.
When creating a foreign
key in MySQL, you need
to create an index on the
referenced column of the
referenced table. The
index can be not unique.

● When creating a foreign
key in GaussDB, you do
not need to create an
index on the referencing
column of the referencing
table. When creating a
foreign key in MySQL, you
need to create an index on
the referencing column of
the referencing table.
Otherwise, a
corresponding index is
automatically added. If
the foreign key is deleted,
this index is not deleted.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 236

Description Syntax Description Difference

● In GaussDB, referencing
tables and referenced
tables can be temporary
tables. Foreign keys
cannot be created
between temporary tables
and non-temporary tables.
In MySQL, temporary
tables cannot be used as
referencing tables or
referenced tables. When a
foreign key is created to
specify a referenced table,
MySQL does not match
the temporary table
created in the current
session.

● When you are creating a
foreign key in GaussDB, it
is optional to specify the
referenced field name of
the referenced table. In
this case, the primary key
in the referenced table is
used as the referenced
field of the foreign key. In
MySQL, the referenced
field of the referenced
table must be specified.

● In GaussDB, the data type
of a referencing field or
referenced field can be
modified regardless of
whether
foreign_key_checks is
disabled. In MySQL, you
can change the data type
of a referencing field or
referenced field only when
foreign_key_checks is set
to off.

● In GaussDB, you can
delete referencing fields
from a referencing table.
In this case, related
foreign key constraints are
deleted cascadingly.
Attempts to delete
referencing field in a

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 237

Description Syntax Description Difference

referencing table will fail
in MySQL.

● In GaussDB, if
foreign_key_checks is set
to on and a referenced
table and a referencing
table are in different
schemas, when the
schema that contains the
referenced table is
deleted, foreign key
constraints on the
referencing table are
deleted cascadingly. In
MySQL, if
foreign_key_checks is set
to on, the deletion fails.

Options related to
table definition.

CREATE TABLE ... and
ALTER TABLE ...

● GaussDB does not support
the following options:
AVG_ROW_LENGTH,
CHECKSUM,
COMPRESSION,
CONNECTION, DATA
DIRECTORY, INDEX
DIRECTORY,
DELAY_KEY_WRITE,
ENCRYPTION,
INSERT_METHOD,
KEY_BLOCK_SIZE,
MAX_ROWS, MIN_ROWS,
PACK_KEYS, PASSWORD,
STATS_AUTO_RECALC,
STATS_PERSISTENT, and
STATS_SAMPLE_PAGES.

● The following options do
not report errors in
GaussDB and do not take
effect: ENGINE and
ROW_FORMAT.

Encrypt the CMKs of
CEKs in round robin
(RR) mode and
encrypt the plaintext
of CEKs.

ALTER COLUMN
ENCRYPTION KEY

The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 238

Description Syntax Description Difference

The encrypted
equality query feature
adopts a multi-level
encryption model.
The master key
encrypts the column
key, and the column
key encrypts data.
This syntax is used to
create a master key
object.

CREATE CLIENT
MASTER KEY

The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

Create a CEK that can
be used to encrypt a
specified column in a
table.

CREATE COLUMN
ENCRYPTION KEY

The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

Send keys to the
server for caching.
This function is used
only when the
memory decryption
emergency channel is
enabled. This is a
fully-encrypted
function.

\send_token The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

Send keys to the
server for caching.
This function is used
only when the
memory decryption
emergency channel is
enabled. This is a
fully-encrypted
function.

\st The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

Destroy the keys
cached on the server.
This function is used
only when the
memory decryption
emergency channel is
enabled. This is a
fully-encrypted
function.

\clear_token The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 239

Description Syntax Description Difference

Destroy the keys
cached on the server.
This function is used
only when the
memory decryption
emergency channel is
enabled. This is a
fully-encrypted
function.

\ct The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

Set the parameters
for accessing the
external key manager
in the fully-encrypted
database features.

\key_info KEY_INFO The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

Enable third-party
dynamic libraries and
set related
parameters. This is a
fully-encrypted
function.

\crypto_module_info
MODULE_INFO

The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

Enable third-party
dynamic libraries and
set related
parameters. This is a
fully-encrypted
function.

\cmi MODULE_INFO The M-compatible mode
does not support the full
encryption. Therefore, this
syntax is not supported.

The GENERATED
ALWAYS AS
statement cannot
reference columns
generated by
GENERATED ALWAYS
AS.

Generated Always AS In GaussDB, the GENERATED
ALWAYS AS statement
cannot reference columns
generated by GENERATED
ALWAYS AS, but it can in
MySQL.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 240

Description Syntax Description Difference

Support syntaxes that
change table names.

ALTER TABLE tbl_name
RENAME [TO | AS | =]
new_tbl_name;
Or RENAME {TABLE |
TABLES} tbl_name TO
new_tbl_name [,
tbl_name2 TO
new_tbl_name2, ...];

The ALTER RENAME syntax in
GaussDB supports only the
function of changing the
table name and cannot be
coupled with other function
operations.
In GaussDB, only the old
table name column supports
the usage of
schema.table_name, and the
new and old table names
belong to the same schema.
GaussDB does not support
renaming of old and new
tables across schemas.
However, if you have the
permission, you can modify
the names of tables in other
schemas in the current
schema.
The syntax for renaming
multiple groups of tables in
GaussDB supports renaming
of all local temporary tables,
but does not support the
combination of local
temporary tables and non-
local temporary tables.

Disable the GUC
parameter
enable_expr_fusion.

SET
enable_expr_fusion=
ON

In M-compatible mode, the
GUC parameter
enable_expr_fusion cannot
be enabled.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 241

Description Syntax Description Difference

Support the CREATE
VIEW AS SELECT
syntax.

CREATE VIEW table_name AS
query;

● When the precision
transfer function is
disabled
(m_format_behavior_co
mpat_options is not set
to
enable_precision_decimal
), the "query" in the
CREATE VIEW view_name
AS query syntax cannot
contain calculation
operations (such as
function calling and
calculation using
operators) for the
following types. Only
direct column calling is
supported (such as
SELECT col1 FROM
table1). It can be used
when the precision
transfer function is
enabled
(m_format_behavior_co
mpat_options is set to
enable_precision_decimal
).
– BINARY[(n)]
– VARBINARY(n)
– CHAR[(n)]
– VARCHAR(n)
– TIME[(p)]
– DATETIME[(p)]
– TIMESTAMP[(p)]
– BIT[(n)]
– NUMERIC[(p[,s])]
– DECIMAL[(p[,s])]
– DEC[(p[,s])]
– FIXED[(p[,s])]
– FLOAT4[(p, s)]
– FLOAT8[(p,s)]
– FLOAT[(p)]
– REAL[(p, s)]
– FLOAT[(p, s)]

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 242

Description Syntax Description Difference

– DOUBLE[(p,s)]
– DOUBLE

PRECISION[(p,s)]
– TEXT
– TINYTEXT
– MEDIUMTEXT
– LONGTEXT
– BLOB
– TINYBLOB
– MEDIUMBLOB
– LONGBLOB

● In the simple query
scenario, an error message
is displayed for the
preceding calculation
operations in M-
compatible mode. For
example:
m_db=# CREATE TABLE TEST
(salary int(10));
CREATE TABLE
m_db=# INSERT INTO TEST
VALUES(8000);
INSERT 0 1
m_db=# CREATE VIEW view1 AS
SELECT salary/10 as te FROM
TEST;
ERROR: Unsupported type
numeric used with expression in
CREATE VIEW statement.
m_db=# CREATE TABLE TEST
(salary int(10));
CREATE TABLE
m_db=# INSERT INTO TEST
VALUES(8000);
INSERT 0 1
m_db=# CREATE VIEW view2 AS
SELECT sec_to_time(salary) as te
FROM TEST;
ERROR: Unsupported type time
used with expression in CREATE
VIEW statement.

● In non-simple query
scenarios such as
composite query and
subquery, the calculation
operations of the
preceding types in M-
compatible mode are
different from those in
MySQL. In M-compatible
mode, the data type
column precision attribute

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 243

Description Syntax Description Difference

of the created table is not
retained.

● CREATE VIEW AS SELECT.
When a UNION is nested
with a subquery, MySQL
creates a temporary table
for the subquery. If the
return type of a temporary
table is tinytext, text,
mediumtext, or longtext,
MySQL performs
calculation based on the
default maximum byte
length of the type.
However, GaussDB
performs calculation
based on the actual byte
length of the created
temporary table.
Therefore, the text type of
the GaussDB aggregation
result may be smaller
than that of the MySQL
aggregation result. For
example, longtext is
returned for MySQL, and
mediumtext is returned
for GaussDB. For example:
Behavior in MySQL 5.7:
mysql> CREATE TABLE IF NOT
EXISTS tb_1 (id int,col_text2 text);
Query OK, 0 rows affected (0.02
sec)

mysql> CREATE TABLE IF NOT
EXISTS tb_2 (id int,col_text2 text);
Query OK, 0 rows affected (0.02
sec)

mysql> CREATE VIEW v1 AS
SELECT * FROM (SELECT
cast(col_text2 AS char) c37 FROM
tb_1) t1
 -> UNION ALL SELECT * FROM
(SELECT cast(col_text2 as char)
c37 FROM tb_2) t2;
Query OK, 0 rows affected (0.00
sec)

mysql> DESC v1;
+-------+----------+------+-----
+---------+-------+
| Field | Type | Null | Key |
Default | Extra |
+-------+----------+------+-----
+---------+-------+

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 244

Description Syntax Description Difference

| c37 | longtext | YES | |
NULL | |
+-------+----------+------+-----
+---------+-------+
1 row in set (0.00 sec)

Behavior in GaussDB:
mysql_regression=# CREATE
TABLE IF NOT EXISTS tb_1 (id
int,col_text2 text);
CREATE TABLE
mysql_regression=# CREATE
TABLE IF NOT EXISTS tb_2 (id
int,col_text2 text);
CREATE TABLE
mysql_regression=# CREATE VIEW
v1 AS SELECT * FROM (SELECT
cast(col_text2 AS char) c37 from
tb_1) t1
mysql_regression-# UNION ALL
SELECT * FROM (SELECT
cast(col_text2 AS char) c37 FROM
tb_2) t2;
CREATE VIEW
mysql_regression=# DESC v1;
 Field | Type | Null | Key |
Default | Extra
-------+------------+------+-----
+---------+-------
 c37 | mediumtext | YES |
| |
(1 row)

● When the bitstring
constant is used to create
a view, the constant is
converted into hexstring
for creation in MySQL,
whereas the bitstring
constant is used directly to
create a view in GaussDB.
The bitstring constant is
an unsigned value.
Therefore, the attribute of
the view created in
GaussDB is unsigned.
– Behavior in MySQL 5.7:
mysql> SELECT version();
+------------------+
| version() |
+------------------+
| 5.7.44-debug-log |
+------------------+
1 row in set (0.00 sec)

mysql> DROP VIEW IF EXISTS v1;
Query OK, 0 rows affected, 1
warning (0.00 sec)

mysql> CREATE VIEW v1 AS
SELECT b'101'/b'101' AS c22;
Query OK, 0 rows affected (0.01

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 245

Description Syntax Description Difference

sec)

mysql> DESC v1;
+-------+-----------------------+------
+-----+---------+-------+
| Field | Type | Null |
Key | Default | Extra |
+-------+-----------------------+------
+-----+---------+-------+
| c22 | decimal(5,4) unsigned |
YES | | NULL | |
+-------+-----------------------+------
+-----+---------+-------+
1 row in set (0.00 sec)

mysql> SHOW CREATE VIEW v1;
+------
+---------------------------------------
--

+----------------------
+----------------------+
| View | Create
View

 | character_set_client |
collation_connection |
+------
+---------------------------------------
--

+----------------------
+----------------------+
| v1 | CREATE
ALGORITHM=UNDEFINED
DEFINER=`omm`@`%` SQL
SECURITY DEFINER VIEW `v1` AS
select (0x05 / 0x05) AS `c22` |
utf8mb4 |
utf8mb4_general_ci |
+------
+---------------------------------------
--

+----------------------
+----------------------+
1 row in set (0.00 sec)

– Behavior in GaussDB:
m_db=# DROP VIEW IF EXISTS v1;
DROP VIEW
m_db=# CREATE VIEW v1 AS
SELECT b'101'/b'101' AS c22;
CREATE VIEW
m_db=# DESC v1;
 Field | Type | Null | Key |
Default | Extra
-------+--------------+------+-----
+---------+-------
 c22 | decimal(5,4) | YES |
| |
(1 row)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 246

Description Syntax Description Difference

Range of index
names that can be
duplicated

CREATE TABLE, CREATE
INDEX

In MySQL, an index name is
unique in a table. Different
tables can have the same
index name. In M-compatible
mode, the index name must
be unique in the same
schema. In M-compatible
mode, the same rules apply
to constraints and keys that
automatically create indexes.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 247

Description Syntax Description Difference

View dependency
differences

CREATE VIEW and
ALTER TABLE

In MySQL, view storage
records only the table name,
column name, and database
name of the target table, but
does not record the unique
identifier of the target table.
GaussDB parses the SQL
statement used for creating a
view and stores the unique
identifier of the target table.
Therefore, the differences are
as follows:
1. In MySQL, you can modify

the data type of a column
on which a view depends
because the view is
unaware of the
modification of the target
table. In GaussDB, such
modification is forbidden
and the attempt will fail.

2. In MySQL, you can
rename a column on
which a view depends
because the view is
unaware of the
modification of the target
table, but the view cannot
be queried after the
operation. In GaussDB,
each column precisely
stores the unique
identifier of the
corresponding table and
column. Therefore, the
column name in the table
can be modified
successfully without
changing the column
name in the view. In
addition, the view can be
queried after the
operation.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 248

Description Syntax Description Difference

Foreign key
differences

CREATE TABLE GaussDB foreign key
constraints are insensitive to
types. If the data types of the
fields in the main and child
tables are implicitly
converted, foreign keys can
be created. MySQL are
sensitive to foreign key types.
If the column types of the
two tables are different,
foreign keys cannot be
created.
MySQL does not allow you to
modify the data type or
name of a table column
where the foreign key of the
column is located by running
MODIFY COLUMN or
CHANGE COLUMN, but
GaussDB supports such
operation.

Differences in index
ascending and
descending orders

CREATE INDEX In MySQL 5.7, ASC | DESC is
parsed but ignored, and the
default behavior is ASC. In
MySQL 8.0 and GaussDB,
ASC | DESC is parsed and
takes effect.

Modifying a view
definition

CREATE OR REPLACE
VIEW and ALTER VIEW

In MySQL, you can modify
any attribute of a view. In
GaussDB, names and types of
columns in non-updatable
views cannot be modified
and the columns cannot be
deleted, but these operations
are allowed in updatable
views.
In MySQL, after a column in
the underlying view of a
nested view is modified, the
upper-level views can be
used as long as the column
name exists. In GaussDB,
after the name or type of a
column in the underlying
view of a nested view is
modified or the column is
deleted, the upper-layer
views are unavailable.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 249

Description Syntax Description Difference

ANALYZE partition
syntax

ALTER TABLE tbl_name
ANALYZE PARTITION
{partition_names | ALL}

● In GaussDB, this syntax
supports only partition
statistics collection.

● In MySQL,
partition_names is case-
insensitive. In GaussDB,
partition_names with
backquotes are case-
insensitive, but the one
without backquotes are
case-sensitive.

● In GaussDB, ALTER TABLE
is displayed if the
execution is successful.
The execution error is
reported based on the
existing error code. In
MySQL, the execution
result is displayed in a
table.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 250

Description Syntax Description Difference

Supports the syntax
of virtual generated
columns.

[GENERATED ALWAYS]
AS (generation_expr)
[STORED | VIRTUAL]

● Indexes can be created for
virtual generated columns
in MySQL, but cannot in
GaussDB.

● Virtual generated columns
can be used as partition
keys in MySQL, but cannot
in GaussDB.

● The CHECK constraint of
generated columns in
GaussDB is compatible
with that in MySQL 8.0.
Therefore, the CHECK
constraint is effective.

● In MySQL, ALTER TABLE
can be used to modify the
stored generated columns
that are considered as
partition keys. GaussDB
does not support this
operation.

● In MySQL, when data in
generated columns of an
updatable view is
updated, the DEFAULT
keyword can be specified.
In GaussDB, this operation
is not supported.

● IGNORE feature is
supported by virtual
generated columns in
MySQL, but not in
GaussDB.

● Querying a virtual
generated column in
GaussDB is equivalent to
querying the expression of
the virtual generated
column. (If the data type,
character set, or collation
defined in the expression
is inconsistent with that
defined in the column, the
expression type is
implicitly converted to the
type defined in the
column) This behavior is
to query virtual generated

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 251

Description Syntax Description Difference

columns that are used for
creating tables or views or
other behaviors. As a
result, the data type of
such columns may be
different from those in
MySQL. For example,
when CREATE TABLE AS is
used to create a table, if
the virtual generated
column in the source table
is defined as the FLOAT
type, the data type of the
corresponding column in
the target table may be
DOUBLE, which is
different from that in
MySQL.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 252

Description Syntax Description Difference

Create a table and
insert data into the
table using CREATE
TABLE SELECT.

CREATE TABLE [AS]
SELECT

● Partitioned tables cannot
be created.

● REPLACE/IGNORE is not
supported.

● If the SELECT column is
not a direct table column,
NULL is allowed by
default, and there is no
default value. For
example, the field a in a
table created by running
create table t1 select
unix_timestamp('2008-0
1-02 09:08:07.3465') as a
can be NULL and its
default value is not
required.

● To use all functions, you
need to set the GUC
parameter
m_format_behavior_com
pat_options to
enable_precision_decimal
. Otherwise, a behavior
error will be reported for
types related to data type
precision due to version
compatibility issues. For
example, an error is
reported in the UNION
scenario or when a
SELECT column contains a
non-direct table column
(such as expressions,
functions, and constants).

● When CREATE TABLE AS
SELECT is used to create a
table, the maximum
length of a column name
in the table is 63
characters. If the length
exceeds 63 characters, the
excess part will be
truncated. If the length
exceeds 64 characters (the
maximum) in MySQL, an
error is reported.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 253

Description Syntax Description Difference

ALTER TABLE
tabname;

ALTER TABLE tabname; In GaussDB, tablename
cannot be empty.

The column_list of a
partition key cannot
be empty.

CREATE TABLE ...
PARTITION ...

In GaussDB, column_list of a
partition key cannot be
empty.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 254

Description Syntax Description Difference

The maximum length
of the UTF-8
character set code is
different. As a result,
the column length of
a created table or
view is different.

CREATE TABLE [AS]
SELECT; CREATE VIEW
[AS] SELECT

● If the MySQL character set
is utf8 and the GaussDB
character set is utf8
(utf8mb4), the maximum
length of the UTF-8 code
of MySQL is 3 bytes, and
the maximum length of
the UTF-8 (utf8mb4) code
of GaussDB is 4 bytes.
When the GUC parameter
m_format_behavior_com
pat_options is set to
'enable_precision_decima
l', create table as (CTAS)
and create view as (CVAS)
may create different text
types (including binary
text).
The returned character
length in the CTAS and
CVAS scenarios depends
on the maximum length
of the character set. For
example, if the maximum
length of the character set
returned by a node is
1024 for both GaussDB
and MySQL, the length of
the returned characters is
341 (1024/3) for MySQL
and 256 (1024/4) for
GaussDB. For example:
Behavior in MySQL 5.7:
mysql> CREATE TABLE t1 AS
SELECT (case when true then
min(521.2312) else
GROUP_CONCAT(115.0414) end)
res1;
Query OK, 1 row affected (0.06
sec)
Records: 1 Duplicates: 0
Warnings: 0

mysql> DESC t1;
+-------+--------------+------+-----
+---------+-------+
| Field | Type | Null | Key |
Default | Extra |
+-------+--------------+------+-----
+---------+-------+
| res1 | varchar(341) | YES | |
NULL | |
+-------+--------------+------+-----
+---------+-------+
1 row in set (0.01 sec)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 255

Description Syntax Description Difference

Behavior in GaussDB:
mysql_regression=# CREATE
TABLE t1 AS SELECT (case when
true then min(521.2312) else
GROUP_CONCAT(115.0414) end)
res1;
INSERT 0 1
mysql_regression=# DESC t1;
 Field | Type | Null | Key |
Default | Extra
-------+--------------+------+-----
+---------+-------
 res1 | varchar(256) | YES |
| |
(1 row)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 256

Description Syntax Description Difference

Setting default values
of columns

CREATE TABLE and
ALTER TABLE

● For MySQL 5.7, only the
default value without
parentheses is supported.
MySQL 8.0 and GaussDB
support default values in
parentheses.
-- GaussDB
m_db=# DROP TABLE IF EXISTS
t1, t2;
DROP TABLE
m_db=# CREATE TABLE t1(a
DATETIME DEFAULT NOW());
CREATE TABLE
m_db=# CREATE TABLE t2(a
DATETIME DEFAULT (NOW()));
CREATE TABLE

-- MySQL5.7
mysql> DROP TABLE IF EXISTS t1,
t2;
Query OK, 0 rows affected (0.04
sec)

mysql> CREATE TABLE t1(a
DATETIME DEFAULT NOW());
Query OK, 0 rows affected (0.04
sec)

mysql> CREATE TABLE t2(a
DATETIME DEFAULT (NOW()));
ERROR 1064 (42000): You have
an error in your SQL syntax; check
the manual that corresponds to
your MySQL server version for the
right syntax to use near
'(NOW()))' at line 1

-- MySQL8.0
mysql> DROP TABLE IF EXISTS t1,
t2;
Query OK, 0 rows affected (0.17
sec)

mysql> CREATE TABLE t1(a
DATETIME DEFAULT NOW());
Query OK, 0 rows affected (0.19
sec)

mysql> CREATE TABLE t2(a
DATETIME DEFAULT (NOW()));
Query OK, 0 rows affected (0.20
sec)

● In MySQL, when
specifying default values
for BLOB, TEXT, and JSON
data types, you must add
parentheses to the default
values. In GaussDB, you
do not need to add
parentheses when
specifying default values

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 257

Description Syntax Description Difference

for the preceding data
types.

● When the default value is
specified, GaussDB does
not check whether the
default value overflows.
When the default value
without parentheses is
specified in MySQL,
MySQL checks whether
the default value
overflows. When the
default value with
parentheses is specified,
MySQL does not check
whether the default value
overflows.

● In GaussDB, time
constants starting with
DATE, TIME, or
TIMESTAMP can be used
to specify default values
for columns. In MySQL,
when time constants
starting with DATE, TIME,
or TIMESTAMP are used to
specify default values for
columns, parentheses
must be added to the
default values.

-- GaussDB
m_db=# DROP TABLE IF EXISTS t1, t2;
DROP TABLE
m_db=# CREATE TABLE t1(a
TIMESTAMP DEFAULT TIMESTAMP
'2000-01-01 00:00:00');
CREATE TABLE
m_db=# CREATE TABLE t2(a
TIMESTAMP DEFAULT (TIMESTAMP
'2000-01-01 00:00:00'));
CREATE TABLE

-- MySQL5.7
mysql> DROP TABLE IF EXISTS t1, t2;
Query OK, 0 rows affected (0.02 sec)

mysql> CREATE TABLE t1(a
TIMESTAMP DEFAULT TIMESTAMP
'2000-01-01 00:00:00');
ERROR 1067 (42000): Invalid default
value for 'a'
mysql> CREATE TABLE t2(a
TIMESTAMP DEFAULT (TIMESTAMP
'2000-01-01 00:00:00'));
ERROR 1064 (42000): You have an
error in your SQL syntax; check the

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 258

Description Syntax Description Difference

manual that corresponds to your
MySQL server version for the right
syntax to use near '(TIMESTAMP
'2000-01-01 00:00:00'))' at line 1

-- MySQL8.0
mysql> DROP TABLE IF EXISTS t1, t2;
Query OK, 0 rows affected (0.14 sec)

mysql> CREATE TABLE t1(a
TIMESTAMP DEFAULT TIMESTAMP
'2000-01-01 00:00:00');
ERROR 1067 (42000): Invalid default
value for 'a'
mysql> CREATE TABLE t2(a
TIMESTAMP DEFAULT (TIMESTAMP
'2000-01-01 00:00:00'));
Query OK, 0 rows affected (0.19 sec)

3.8.4 DML

Table 3-33 DML syntax compatibility

No. Description Syntax Difference

1 DELETE supports
deleting data from
multiple tables.

DELET
E

● During multi-table deletion, if a
tuple to be deleted is
concurrently modified by other
sessions, the latest values of all
tuples in the session are used for
matching again. If the conditions
are still met, the tuple is deleted.
During this process, MySQL
deletes all target tables in the
same way. However, GaussDB
only rematches tuples in the
target tables that involve
concurrent updates, which may
cause data inconsistency.

● The verification rules of target
tables and range tables in the
multi-table operation syntax are
different from those in MySQL.
After the GUC compatibility
parameter
m_format_dev_version is set to
's2', the verification rules become
consistent with MySQL.

2 DELETE supports
ORDER BY and LIMIT.

DELET
E

-

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 259

No. Description Syntax Difference

3 DELETE supports
deleting data from a
specified partition (or
subpartition).

DELET
E

-

4 UPDATE supports
updating data from
multiple tables.

UPDAT
E

During multi-table update, if a tuple
to be updated is concurrently
modified by other sessions, the latest
values of all tuples in the session are
used for matching again. If the
conditions are still met, the tuple is
updated. During this process, MySQL
updates all target tables consistently.
However, GaussDB only rematches
tuples of target tables that involve
concurrent updates, which may
cause data inconsistency.

5 UPDATE supports
ORDER BY and LIMIT.

UPDAT
E

-

6 Support the SELECT
INTO syntax.

SELECT ● In GaussDB, you can use SELECT
INTO to create a table based on
the query result. MySQL does not
support this function.

● In GaussDB, the SELECT INTO
syntax does not support the
query result that is obtained after
the set operation of multiple
queries is performed.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 260

No. Description Syntax Difference

7 Support the REPLACE
INTO syntax.

REPLA
CE

Difference between the initial values
of the time type. For example:
● MySQL is not affected by the

strict or loose mode. You can
insert time 0 into a table.
mysql> CREATE TABLE test(f1 TIMESTAMP
NOT NULL, f2 DATETIME NOT NULL, f3
DATE NOT NULL);
Query OK, 1 row affected (0.00 sec)

mysql> REPLACE INTO test VALUES(f1, f2,
f3);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM test;
+---------------------+---------------------
+------------+
| f1 | f2 | f3 |
+---------------------+---------------------
+------------+
| 0000-00-00 00:00:00 | 0000-00-00
00:00:00 | 0000-00-00 |
+---------------------+---------------------
+------------+
1 row in set (0.00 sec)

● The time 0 can be successfully
inserted only when GaussDB is in
loose mode.
gaussdb=# SET sql_mode = '';
SET
gaussdb=# CREATE TABLE test(f1
TIMESTAMP NOT NULL, f2 DATETIME NOT
NULL, f3 DATE NOT NULL);
CREATE TABLE
gaussdb=# REPLACE INTO test VALUES(f1,
f2, f3);
REPLACE 0 1
gaussdb=# SELECT * FROM test;
f1 | f2 | f3
---------------------+---------------------
+------------
0000-00-00 00:00:00 | 0000-00-00 00:00:00
| 0000-00-00
(1 row)
In strict mode, the error
"Incorrect Date/Time/Datetime/
Timestamp/Year value" is
reported.

8 SELECT supports multi-
partition query.

SELECT -

9 UPDATE supports
multi-partition update.

UPDAT
E

-

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 261

No. Description Syntax Difference

10 Import data by using
LOAD DATA.

LOAD
DATA

When LOAD DATA is used to import
data, GaussDB differs from MySQL
in the following aspects:
● The execution result of the LOAD

DATA syntax is the same as that
in M* strict mode. The loose
mode is not adapted currently.

● The IGNORE and LOCAL
parameters are used only to
ignore the conflicting rows when
the imported data conflicts with
the data in the table and to
automatically fill default values
for other columns when the
number of columns in the file is
less than that in the table. Other
functions are not supported
currently.

● If the keyword LOCAL is specified
and the file path is a relative
path, the file is searched from the
binary directory. If the keyword
LOCAL is not specified and the
file path is a relative path, the file
is searched from the data
directory.

● LOAD DATA can only be used to
import files from the server.

● The [(col_name_or_user_var [,
col_name_or_user_var]...)]
parameter cannot be used to
specify a column repeatedly.

● The newline character specified
by [FIELDS TERMINATED BY
'string'] cannot be the same as
the separator specified by [LINES
TERMINATED BY'string'].

● If the data written to a table by
running LOAD DATA cannot be
converted to the data type of the
table, an error is reported.

● The LOAD DATA SET expression
does not support the calculation
of a specified column name.

● LOAD DATA applies only to tables
but not views.

● The default newline character of
the file in Windows is different

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 262

No. Description Syntax Difference

from that in Linux. LOAD DATA
cannot identify this scenario and
reports an error. You are advised
to check the newline character at
the end of lines in the file to be
imported.

11 INSERT supports the
VALUES reference
column syntax.

INSERT
INTO
tabna
me
VALUE
S(1,2,3
) ON
DUPLI
CATE
KEY
UPDAT
E b =
VALUE
S(colu
mn_na
me)

The format of table-name.column-
name is not supported by VALUES()
in the ON DUPLICATE KEY UPDATE
clause in GaussDB, but is supported
in MySQL.

12 LIMIT differences DELET
E,
SELECT
, and
UPDAT
E

The LIMIT clauses of each statement
in GaussDB are different from those
in MySQL.
The maximum parameter value of
LIMIT (of the BIG INT type) in
GaussDB is 9223372036854775807.
If the actual value exceeds the
number, an error is reported. In
MySQL, the maximum value of
LIMIT (of the unsigned LONGLONG
type) is 18446744073709551615. If
the actual value exceeds the number,
an error is reported.
You can set a small value in LIMIT,
which is rounded off during
execution. The value cannot be a
decimal in MySQL.
In a DELETE statement, GaussDB
does not allow limit to be 0, while
MySQL allows limit to be 0.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 263

No. Description Syntax Difference

13 Difference in using
backslashes (\)

INSERT The usage of backslashes (\) can be
determined by parameters in
GaussDB and MySQL, but their
default usages are different.
In MySQL, the
NO_BACKSLASH_ESCAPES
parameter is used to determine
whether backslashes (\) in character
strings and identifiers are parsed as
common characters or escape
characters. By default, backslashes
(\) are parsed as escape characters
in character strings and identifiers. If
set sql_mode is set to
'NO_BACKSLASH_ESCAPES',
backslashes (\) cannot be parsed as
escape characters in character
strings and identifiers.
In GaussDB, the
standard_conforming_strings
parameter is used to determine
whether backslashes (\) in character
strings and identifiers are parsed as
common characters or escape
characters. The default value is on,
indicating that backslashes (\) are
parsed as common text in common
character string texts according to
the SQL standard. If set
standard_conforming_strings is set
to off, backslashes (\) can be parsed
as escape characters in character
strings and identifiers.

14 If the inserted value is
less than the number of
columns, MySQL
reports an error while
GaussDB supplements
null values.

INSERT In GaussDB, if the column list is not
specified and the inserted value is
less than the number of columns,
values are assigned based on the
column sequence when the table is
created by default. If a column has a
NOT NULL constraint, an error is
reported. If no NOT NULL constraint
exists and a default value is
specified, the default value is added
to the column. If no default value is
specified, null is added.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 264

No. Description Syntax Difference

15 The columns sorted in
ORDER BY must be
included in the columns
of the result set.

SELECT In GaussDB, when used with the
GROUP BY clause, the columns to be
sorted in ORDER BY must be
included in the columns of the result
set retrieved by the SELECT
statement. When used with the
DISTINCT keyword, the columns to
be sorted in ORDER BY must be
included in the columns of the result
set retrieved by the SELECT
statement.

16 Do not use ON
DUPLICATE KEY
UPDATE to modify
constraint columns.

INSERT -

17 Duplicate column
names are allowed in
the SELECT result.

SELECT -

18 NATURAL JOIN in
GaussDB is different
from that in MySQL.

SELECT In GaussDB, NATURAL [[LEFT |
RIGHT] OUTER] JOIN allows you not
to specify LEFT | RIGHT. If LEFT |
RIGHT is not specified, NATURAL
OUTER JOIN is NATURAL JOIN. You
can use JOIN consecutively.

19 If the foreign key data
type is timestamp or
datetime, an error is
reported for attempts
to update or delete the
foreign table.

UPDAT
E/
DELET
E

If the foreign key data type is
timestamp or datetime, an error is
reported for attempts to update or
delete the foreign table, but in
MySQL the table can be updated or
deleted.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 265

No. Description Syntax Difference

20 Compatibility in terms
of nature join and using

SELECT ● In GaussDB, join sequence is
strictly from left to right. MySQL
may adjust the sequence.

● In GaussDB and MySQL, columns
involving join in the left or right
table cannot be ambiguous
during natural join or using.
(Generally, ambiguity is caused by
duplicate names of columns in
the left or right temporary table.)
The join sequence differs in two
databases, which may lead to
different behaviors.
– Behavior in GaussDB:

m_regression=# CREATE TABLE t1(a
int,b int);
CREATE TABLE
m_regression=# CREATE TABLE t2(a
int,b int);
CREATE TABLE
m_regression=# CREATE TABLE t3(a
int,b int);
CREATE TABLE
m_regression=# SELECT * FROM t1 JOIN
t2;
 a | b | a | b
---+---+---+---
(0 rows)
m_regression=# SELECT * FROM t1 JOIN
t2 natural join t3; -- Failed. Duplicate
contents exist in columns a and b of
the temporary table obtained by t1 join
t2. Therefore, there is ambiguity in
nature join.
ERROR: common column name "a"
appears more than once in left table

– Behavior in MySQL:
mysql> SELECT * FROM t1 JOIN t2
NATURAL JOIN t3;
Empty set (0.00 sec)
mysql> SELECT * FROM (t1 join t2)
NATURAL JOIN t3;
ERROR 1052 (23000): Column 'a' in
from clause is ambiguous

21 The WITH clause is
compatible with MySQL
8.0.

SELECT
,
INSERT
,
UPDAT
E, and
DELET
E

-

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 266

No. Description Syntax Difference

22 Compatibility in terms
of join

SELECT Commas (,) cannot be used as a way
of join in GaussDB, but can be used
in MySQL.
GaussDB does not support use index
for join.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 267

No. Description Syntax Difference

23 Displaying column
names in the SELECT
statement

SELECT ● To ensure that the column names
displayed in the SELECT
statement are the same as those
in MySQL, you need to enable the
parameter to display the column
name output.
SET m_format_behavior_compat_options =
'select_column_name'

● If this configuration item is not
set:
– SELECT System function: The

output is the system function
name.

– SELECT Expression: The output
is ?column?.

– SELECT Boolean value: The
output is a Boolean value.

● If this configuration item is set,
the column name is displayed as
all functions or expressions.
– The MySQL client ignores

common comments, but the
gsql and PyMySQL clients do
not.

– The MySQL server converts
comments starting with /*!
into executable statements. An
M-compatible database does
not support such comments
and processes them as
common comments.

– If an expression contains two
hyphens (--) that is not
followed by a space, an M-
compatible database cannot
identify the two hyphens as a
comment, whereas the MySQL
server identifies it as two
hyphens (--).

– If the displayed column name
string contains escape
characters, the escaped
characters are displayed only
when
m_format_behavior_compat_
options is set to
enable_escape_string.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 268

No. Description Syntax Difference

Otherwise, the escape
characters are displayed. For
example, in an M-compatible
database, "SELECT"abc\tdef";"
is displayed as abc\tdef when
the preceding option is
disabled.
m_db=# SET
m_format_behavior_compat_options='sel
ect_column_name,enable_escape_string';
SET
m_db=# SELECT "abc\tdef";
 abc def

 abc def
(1 row)

m_db=# SET
m_format_behavior_compat_options='sel
ect_column_name';
SET
m_db=# SELECT "abc\tdef";
 abc\tdef

 abc\tdef
(1 row)

– If a column name contains
more than 63 characters, the
extra characters will be
truncated.

– If the last part of an
expression is a comment, the
last comment and the space
connected to the comment are
not displayed.
m_db=# SELECT 123 /* 456 */;
 123

 123
(1 row)

– If an expression is a Boolean
value, the command output is
TRUE or FALSE regardless of
the input case.
m_db=# SELECT true;
 TRUE

 t
(1 row)

– If an expression is null, the
command output is NULL
regardless of the input case.
m_db=# SELECT null;
 NULL

(1 row)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 269

No. Description Syntax Difference

– If an expression contains a
hyphen (-), all inputs are
output as column names.
m_db=# SELECT (+-+1);
 (+-+1)

 -1
(1 row)

m_db=# SELECT -true;
 -true

 -1
(1 row)

m_db=# SELECT -null;
 -null

(1 row)

● When pymysql is used to execute
the SELECT statement, the prefix
of the queried character string
does not use ASCII characters,
and the database is not encoded
in UTF-8, the displayed column
names are different from those in
MySQL.

24 SELECT export file (into
outfile)

SELECT
...
INTO
OUFIL
E ...

In the file exported by using the
SELECT INTO OUTFILE syntax, the
display precision of values of the
FLOAT, DOUBLE, and REAL types in
GaussDB is different from that in
MySQL. The syntax does not affect
the import using COPY the values
after import.

25 UPDATE/INSERT/
REPLACE ... SET
specifies the schema
name and table name.

UPDAT
E/
INSERT
/
REPLA
CE ...
SET

The three-segment format for
UPDATE/REPLACE SET is
database.table.column in MySQL,
and is table.column.filed in GaussDB,
where filed indicates the attribute in
the specified composite type.
For INSERT ... SET, MySQL supports
column, table.column, and
database.table.column. GaussDB
supports only column and does not
support table.column and
database.table.column.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 270

No. Description Syntax Difference

26 The execution sequence
of UPDATE SET is
different from that of
MySQL.

UPDAT
E ...
SET

In MySQL, UPDATE SET is performed
in sequence. The results of UPDATE
at the front affect subsequent results
of UPDATE, and the same column
can be set for multiple times. In
GaussDB, all related data is obtained
first, and then UPDATE is performed
on the data at a time. The same
column cannot be set for multiple
times. After the GUC compatibility
parameter m_format_dev_version is
set to 's2', the behavior can be the
same as that in MySQL only in the
single-table scenario. That is, the
same column can be set for multiple
times and the updated result is
referenced.

27 IGNORE feature UPDAT
E/
DELET
E/
INSERT

The execution process in MySQL is
different from that in GaussDB.
Therefore, the number and
information of generated warnings
may be different.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 271

No. Description Syntax Difference

28 SHOW COLUMNS
syntax

SHOW ● User permission verification is
different from that of MySQL.
– In GaussDB, you need the

USAGE permission on the
schema of a specified table
and table-level or column-
level permissions on the
specified table. Only
information about columns
with the SELECT, INSERT,
UPDATE, REFERENCES, and
COMMENT permissions is
displayed.

– In MySQL, you need table-
level or column-level
permissions on a specified
table. Only information about
columns with the SELECT,
INSERT, UPDATE, REFERENCES,
and COMMENT permissions is
displayed.

● When the LIKE and WHERE
clauses involve string comparison,
the fields Field, Collation, Null,
Extra, and Privileges use the
character set utf8mb4 and the
collation utf8mb4_general_ci, and
the fields Type, Key, Default, and
Comment use the character set
utf8mb4 and the collation
utf8mb4_bin.

● In GaussDB, you are advised not
to select columns other than the
returned fields in the WHERE
clause. Otherwise, unexpected
errors may occur.
-- Expected error
m_db=# SHOW FULL COLUMNS FROM t02
WHERE `b`='pri';
ERROR: Column "b" does not exist.
LINE 1: SHOW FULL COLUMNS FROM t02
WHERE `b`='pri';
 ^

-- Unexpected error
m_db=# SHOW FULL COLUMNS FROM t02
WHERE `c`='pri';
ERROR: input of anonymous composite
types is not implemented
LINE 1: SHOW FULL COLUMNS FROM t02
WHERE `c`='pri';
 ^

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 272

No. Description Syntax Difference

29 SHOW CREATE
DATABASE syntax

SHOW User permission verification is
different from that of MySQL.
● In GaussDB, you need the USAGE

permission on a specified schema.
● In MySQL, you need database-

level permissions (except GRANT
OPTION and USAGE), table-level
permissions (except GRANT
OPTION), or column-level
permissions.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 273

No. Description Syntax Difference

30 SHOW CREATE TABLE
syntax

SHOW ● User permission verification is
different from that of MySQL.
– In GaussDB, you need the

USAGE permission on the
schema where a specified
table is located and table-level
permissions on the specified
table.

– Table-level permissions (except
GRANT OPTION) of the
specified table are required in
MySQL.

● The returned statements for table
creation are different from those
in MySQL.
– In GaussDB, indexes are

returned as CREATE INDEX
statements. In MySQL, indexes
are returned as CREATE TABLE
statements. In GaussDB, the
range of optional parameters
supported by the CREATE
INDEX syntax is different from
that supported by the CREATE
TABLE syntax. Therefore, some
indexes cannot be created in
CREATE TABLE statements.

– In GaussDB, the ENGINE and
ROW_FORMAT options of
CREATE TABLE are adapted
only for the syntax but do not
take effect. Therefore, they are
not displayed in the returned
statements for table creation.

● These statements are compatible
with MySQL only after the
compatibility parameter
m_format_dev_version is set to
's2'. The compatibility parameter
takes effect by changing the
positions of column comments,
table comments, ON COMMIT
option for global temporary
tables, primary key and unique
constraints (where the USING
INDEX TABLESPACE option is no
longer displayed), and index
comments.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 274

No. Description Syntax Difference

31 SHOW CREATE VIEW
syntax

SHOW ● User permission verification is
different from that of MySQL.
– In GaussDB, you need the

USAGE permission on the
schema where a specified view
is located and table-level
permissions on the specified
view.

– In MySQL, you need the table-
level SELECT and table-level
SHOW VIEW permissions on
the specified view.

● The returned statements for view
creation are different from those
in MySQL. If a view is created in
the format of SELECT * FROM
tbl_name, * is not expanded in
GaussDB but expanded in MySQL.

● The character_set_client and
collation_connection fields in the
returned result are different from
those in MySQL.
– The session values of system

variables character_set_client
and collation_connection are
displayed during view creation
in MySQL

– Related metadata is not
recorded in GaussDB and
NULL is displayed.

32 SHOW PROCESSLIST
syntax

SHOW In GaussDB, the field content and
case in the query result of this
command are the same as those in
the information_schema.processlist
view. In MySQL, the field content
and case may be different.
● In GaussDB, common users can

access only their own thread
information. Users with the
SYSADMIN permission can access
thread information of all users.

● In MySQL, common users can
access only their own thread
information. Users with the
PROCESS permission can access
thread information of all users.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 275

No. Description Syntax Difference

33 SHOW [STORAGE]
ENGINES

SHOW In GaussDB, the field content and
case of the query result of this
command are the same as those in
the information_schema.engines
view. In MySQL, they may be
different from those in the view. The
query results of this command are
different in MySQL and GaussDB
because the databases have
different storage engines.

34 SHOW [SESSION]
STATUS

SHOW In GaussDB, the field content and
case of the query result of this
command are the same as those in
the
information_schema.session_status
view. In MySQL, they may be
different from those in the view.
Currently, GaussDB supports only
Threads_connected and Uptime.

35 SHOW [GLOBAL]
STATUS

SHOW In GaussDB, the field content and
case of the query result of this
command are the same as those in
the
information_schema.global_status
view. In MySQL, they may be
different from those in the view.
Currently, GaussDB supports only
Threads_connected and Uptime.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 276

No. Description Syntax Difference

36 SHOW INDEX SHOW ● User permission verification is
different from that of MySQL.
– In GaussDB, you need the

USAGE permission on a
specified schema and table-
level or column-level
permissions on a specified
table.

– In MySQL, you need table-
level (except GRANT OPTION)
or column-level permission on
the specified table.

● Temporary tables in GaussDB are
stored in independent temporary
schemas. When using the FROM
or IN db_name condition to
display the index information of a
specified temporary table, you
must specify db_name as the
schema where the temporary
table is located. Otherwise, the
system displays a message
indicating that the temporary
table does not exist. This is
different from MySQL in some
cases.

● In the query result of GaussDB,
the Table, Index_type, and
Index_comment columns use the
character set utf8mb4 and
collation utf8mb4_bin. The
Key_name, Column_name,
Collation, Null, and Comment
columns use the character set
utf8mb4 and collation
utf8mb4_general_ci.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 277

No. Description Syntax Difference

37 SHOW SESSION
VARIABLES

SHOW In GaussDB, the field content and
case of the query result are the
same as those in the
information_schema.session_variable
s view. In MySQL, they may be
different from those in the view.
In GaussDB, when LIKE and WHERE
are used to select fields in the query
result, the sorting rule is the same as
that of the corresponding fields in
the
information_schema.session_variable
s view.

38 SHOW GLOBAL
VARIABLES

SHOW In GaussDB, the field content and
case of the query result of this
command are the same as those in
the
information_schema.global_variables
view. In MySQL, they may be
different from those in the view.
In GaussDB, when LIKE and WHERE
are used to select fields in the query
result, the sorting rule is the same as
that of the corresponding fields in
the
information_schema.global_variables
view.

39 SHOW CHARACTER SET SHOW In GaussDB, the field content and
case of the query result are the
same as those in the
information_schema.character_sets
view. In MySQL, they may be
different from those in the view.
In GaussDB, when LIKE and WHERE
are used to select fields in the query
result, the sorting rule is the same as
that of the corresponding fields in
the
information_schema.character_sets
view.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 278

No. Description Syntax Difference

40 SHOW COLLATION SHOW In GaussDB, the field content and
case of the query result are the
same as those in the
information_schema.collations view.
In MySQL, they may be different
from those in the view.
In GaussDB, when LIKE and WHERE
are used to select fields in the query
result in GaussDB, the sorting rule is
the same as that of the
corresponding fields in the
information_schema.collations view.

41 EXCEPT Syntax SELECT -

42 SELECT supports the
STRAIGHT_JOIN syntax.

SELECT The execution plans generated in the
multi-table JOIN scenarios in
GaussDB may be different from
those in MySQL.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 279

No. Description Syntax Difference

43 SHOW TABLES SHOW ● The LIKE behavior is different. For
details, see "LIKE" in Operators.

● The WHERE expression behavior
is different. For details, see
"WHERE" in GaussDB.

● In GaussDB, permissions on tables
and databases must be assigned
to users separately. The database
to be queried must be available
to users on the SHOW SCHEMAS.
Users must have permissions on
both tables and databases.
MySQL can be accessed as long
as you have table permissions.

● In GaussDB, the verification logic
preferentially checks whether a
schema exists and then checks
whether the current user has the
permission on the schema, which
is different from that in MySQL.

● In GaussDB, fields in the query
result use the character set
utf8mb4 and collation
utf8mb4_bin.

● In the LIKE clause of GaussDB, if
the target database is
information_schema, the pattern
is converted to lowercase letters
before matching. In MySQL 8.0,
when the target database is
information_schema, the pattern
is converted to uppercase letters
before matching.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 280

No. Description Syntax Difference

44 SHOW TABLE STATUS SHOW ● In GaussDB, the syntax displays
data depending on the tables
view under information_schema.
In MySQL, the tables view
specifies tables.

● In GaussDB, permissions on tables
and databases must be assigned
to users separately. The database
to be queried must be available
to users on the SHOW SCHEMAS.
Users must have permissions on
both tables and databases.
MySQL can be accessed as long
as you have table permissions.

● In GaussDB, the verification logic
preferentially checks whether a
schema exists and then checks
whether the current user has the
permission on the schema, which
is different from that in MySQL.

● In GaussDB, when LIKE and
WHERE are used to select fields
in the query result, the sorting
rule is the same as that of the
corresponding fields in the
information_schema.tables view.

● In the LIKE clause of GaussDB, if
the target database is
information_schema, the pattern
is converted to lowercase letters
before matching. In MySQL 8.0,
when the target database is
information_schema, the pattern
is converted to uppercase letters
before matching.

45 WITH ROLLUP is
supported after GROUP
BY.

SELECT WITH ROLLUP and ORDER BY can
be used together in GaussDB, but
cannot in MySQL.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 281

No. Description Syntax Difference

46 The
ONLY_FULL_GROUP_B
Y option in SQL mode
is supported.

SELECT If the non-aggregate function
column in the SELECT list is
inconsistent with the GROUP BY
field, when all non-aggregate
function columns are in the GROUP
BY list or WHERE list and the
column in the WHERE clause is
equal to a constant, no error is
reported. For the column in the
WHERE clause, GaussDB supports
function column expressions whose
input parameter is 1, but MySQL
does not support function column
expressions.
In GaussDB, the field following
GROUP BY must be a positive
integer.

47 HAVING syntax SELECT In GaussDB, HAVING can only
reference columns in the GROUP BY
clause or columns used in aggregate
functions. However, MySQL supports
more: it allows HAVING to reference
SELECT columns in the list and
columns in external subqueries.

48 Using SELECT to query
system parameters and
user variables

SELECT
@varia
ble,
SELECT
@@var
iable

● In MySQL, user variables can be
queried without adding specific
variable names (that is, SELECT
@). GaussDB does not support
this feature.
Behavior in MySQL:
mysql> SELECT @;
+------------+
| @ |
+------------+
| NULL |
+------------+
1 row in set (0.00 sec)

Behavior in GaussDB:
m_db=# SELECT @;
ERROR: syntax error at or near "@"
LINE 1: SELECT @;
 ^

● When the type of the queried
system variable is BOOLEAN, the
output result is t or f in GaussDB
and 1 or 0 in MySQL. The
BOOLEAN type is actually
mapped to the TINYINT type.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 282

No. Description Syntax Difference

49 Subqueries SELECT ● In GaussDB, the subquery result
cannot contain multiple columns.
If the subquery result contains
multiple columns, an error is
reported. In MySQL, the subquery
result can contain multiple
columns.
Behavior in MySQL:
mysql> SELECT row(1,2) = (SELECT 1,2);
+-------------------------+
| row(1,2) = (select 1,2) |
+-------------------------+
| 1 |
+-------------------------+
1 row in set (0.00 sec)

Behavior in GaussDB:
m_db=# SELECT row(1,2) = (SELECT 1,2);
ERROR: subquery must return only one
column
LINE 1: SELECT row(1,2) = (SELECT
1,2); ^

● In the scenario where precision
transfer is enabled, if the return
type in the FROM clause of a
subquery is numeric in MySQL,
one of the following conditions is
met:
– The SELECT clause contains

GROUP BY.
– The SELECT clause contains

HAVING.
– The SELECT clause contains

DISTINCT.
– The SELECT clause contains

LIMIT.
– The SELECT clause does not

contain FROM table.
– The SELECT clause contains a

statement that assigns a value
to a user-defined variable.

Precision truncation may occur. If
this type of subquery is used as
the intermediate calculation value
for the next operation, the
precision of GaussDB is higher
than that of MySQL.
Behavior in MySQL:
mysql> select greatest((select * from (select
distinct c2/1.61 from t_time) t4),
1.00000000000000000);
+--

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 283

No. Description Syntax Difference

---------------------------------------+
| greatest((select * from (select distinct
c2/1.61 from t_time) t4),
1.00000000000000000) |
+--
---------------------------------------+
|
 39144.72670800000000000 |
+--
---------------------------------------+
1 row in set (0.00 sec)

Behavior in GaussDB:
m_db=# select greatest((select * from
(select distinct c2/1.61 from t_time) t4),
1.00000000000000000);
 greatest

 39144.72670807453416149
(1 row)

In addition, PBE is used together
with user-defined variables. If the
preceding conditions are met,
MySQL outputs results with the
precision of 30 decimal places.
Otherwise, the MySQL outputs
results with the original precision,
but GaussDB always outputs
results with the precision of 30
decimal places. For example:
Behavior in MySQL:
-- The preceding conditions are met:
mysql> SET @var6=12.1234567891;
Query OK, 0 rows affected (0.00 sec)
mysql> PREPARE p1 FROM "SELECT * FROM
(SELECT @var6) t";
Query OK, 0 rows affected (0.00 sec)
Statement prepared
mysql> EXECUTE p1;
+-----------------------------------+
| @var6 |
+-----------------------------------+
| 12.123456789100000000000000000000 |
+-----------------------------------+
1 row in set (0.00 sec)
-- The preceding conditions are not met:
mysql> PREPARE p1 FROM "SELECT * FROM
(SELECT @var6 FROM (SELECT 1) v1) t";
Query OK, 0 rows affected (0.00 sec)
Statement prepared
mysql> EXECUTE p1;
+---------------+
| @var6 |
+---------------+
| 12.1234567891 |
+---------------+
1 row in set (0.00 sec)

Behavior in GaussDB:
-- The preceding conditions are met:
m_db=# SET @var6=12.1234567891;
SET

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 284

No. Description Syntax Difference

m_db=# PREPARE p1 FROM "SELECT *
FROM (SELECT @var6) t";
PREPARE
m_db=# EXECUTE p1;
 @var6

 12.123456789100000000000000000000
(1 row)
-- The preceding conditions are not met:
m_db=# PREPARE p1 FROM "SELECT *
FROM (SELECT @var6 FROM (SELECT 1)
v1) t";
PREPARE
m_db=# EXECUTE p1;
 @var6

 12.123456789100000000000000000000
(1 row)

50 SHOW DATABASES SHOW In GaussDB, fields in the query result
use the character set utf8mb4 and
collation utf8mb4_bin.

51 SELECT followed by a
row expression

SELECT In MySQL, SELECT cannot be
followed by a row expression, but in
GaussDB, SELECT can be followed by
a row expression.
Behavior in MySQL:
mysql> SELECT row(1,2);
ERROR 1241 (21000): Operand should contain
1 column(s)

Behavior in GaussDB:
m_db=# SELECT row(1,2);
 row(1,2)

 (1,2)
(1 row)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 285

No. Description Syntax Difference

52 SELECT view query,
subquery, or UNION
involves the carry
difference when
NUMERIC is converted
to TIME or DATETIME.

SELECT In some SELECT scenarios, the
results of the TIME/DATETIME type
are different from those of MySQL.
Difference scenarios involving
conversion from NUMERIC to TIME/
DATETIME: view query, subquery,
and UNION.
Differential behavior: The SELECT
behavior of GaussDB is unified.
When the NUMERIC type is
converted to the TIME or DATETIME
type, only the maximum precision
bit(6) is carried. In MySQL view
query, subquery, and UNION
scenarios, carry is performed based
on the actual precision of a result.
Behavior in MySQL:
-- In a simple query, carry is performed only on
the result with the precision of 6, which is the
maximum. Therefore, 11:11:00.00002 is output.
mysql> SELECT maketime(11, 11, 2.2/time
'08:30:23.01');
+--+
| maketime(11, 11, 2.2/time '08:30:23.01') |
+--+
| 11:11:00.00002 |
+--+
1 row in set (0.01 sec)

-- In a subquery, carry is performed based on
the actual result precision. Therefore,
11:11:00.00003 is output.
mysql> SELECT * FROM (SELECT maketime(11,
11, 2.2/time '08:30:23.01')) f1;
+--+
| maketime(11, 11, 2.2/time '08:30:23.01') |
+--+
| 11:11:00.00003 |
+--+
1 row in set (0.00 sec)

Behavior in GaussDB:
m_db=# SET
m_format_behavior_compat_options=
'enable_precision_decimal';
SET

-- In a simple query, carry is performed only on
the result with the precision of 6, which is the
maximum. Therefore, 11:11:00.00002 is output.
m_db=# SELECT maketime(11, 11, 2.2/time
'08:30:23.01');
 maketime

 11:11:00.00002
(1 row)

-- In a simple query, carry is performed only on
the result with the precision of 6, which is the
maximum, and the result precision is 5.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 286

No. Description Syntax Difference

Therefore, 11:11:00.00002 is output.
m_db=# SELECT * FROM (SELECT maketime(11,
11, 2.2/time '08:30:23.01')) f1;
 maketime

 11:11:00.00002
(1 row)

53 Differences of SELECT
in calculating and
processing date and
time functions of the
numeric type and
subquery

SELECT When date and time functions of the
numeric type and subquery are
calculated using SELECT, if the GUC
parameter
m_format_behavior_compat_optio
ns is set to
enable_precision_decimal, GaussDB
converts the value of the date and
time type returned by the function
to the one of the numeric type and
then performs calculation based on
the numeric type. The result is also
of the numeric type. MySQL
truncates the values returned by the
date and time functions in scenarios
such as subquery condition query
and group query.
Behavior in MySQL:
mysql> select 1.5688 * (select
ADDDATE('2020-10-20', interval 1 day) where
true group by 1 having true);
+---
-------------------------+
| 1.5688 * (select ADDDATE('2020-10-20',
interval 1 day) where true having true) |
+---
-------------------------+
|
 3168.976 |

Behavior in GaussDB:
m_db=# select 1.5688 * (select
ADDDATE('2020-10-20', interval 1 day) where
true group by 1 having true);
 ?column?

 31691361.744799998
(1 row)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 287

No. Description Syntax Difference

54 Differences in unsigned
types when SELECT
nests subqueries

SELECT When SELECT nests subqueries, the
unsigned type is not overwritten,
which is different from MySQL 5.7.
Behavior in MySQL 5.7:
mysql> drop table if exists t1;
Query OK, 0 rows affected (0.02 sec)

mysql> create table t1 (
 -> c10 real(10, 4) zerofill
 ->);
Query OK, 0 rows affected (0.03 sec)

mysql> insert into t1 values(123.45);
Query OK, 1 row affected (0.00 sec)

mysql> desc t1;
+-------+--------------------------------+------+-----
+---------+-------+
| Field | Type | Null | Key |
Default | Extra |
+-------+--------------------------------+------+-----
+---------+-------+
| c10 | double(10,4) unsigned zerofill | YES |
| NULL | |
+-------+--------------------------------+------+-----
+---------+-------+
1 row in set (0.01 sec)

mysql> create table t1_sub_1 as select (select *
from t1);
Query OK, 1 row affected (0.03 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> desc t1_sub_1;
+--------------------+--------------+------+-----
+---------+-------+
| Field | Type | Null | Key | Default
| Extra |
+--------------------+--------------+------+-----
+---------+-------+
| (select * from t1) | double(10,4) | YES | |
NULL | |
+--------------------+--------------+------+-----
+---------+-------+
1 row in set (0.00 sec)

Behavior in GaussDB:
test=# DROP TABLE IF EXISTS t1;
DROP TABLE
test=# CREATE TABLE t1 (
test(# c10 real(10, 4) ZEROFILL
test(#);
CREATE TABLE
test=# INSERT INTO t1 VALUES(123.45);
INSERT 0 1
test=# DESC t1;
 Field | Type | Null | Key |
Default | Extra
-------+--------------------------------+------+-----
+---------+-------
 c10 | double(10,4) unsigned zerofill | YES |
| |
(1 row)
test=# CREATE TABLE t1_sub_1 AS SELECT
(SELECT * FROM t1);

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 288

No. Description Syntax Difference

INSERT 0 1
test=# DESC t1_sub_1;
 Field | Type | Null | Key | Default |
Extra
-------+-----------------------+------+-----+---------
+-------
 c10 | double(10,4) unsigned | YES | | |
(1 row)

55 SELECT FOR
SHRAE/FOR UPDATE/
LOCK IN SHRAE MODE

SELECT ● The FOR SHARE/FOR UPDATE/
LOCK IN SHARE MODE and
UNION/EXCEPT/DISTINCT/
GROUP BY/HAVING clauses
cannot be used together in
GaussDB. They can be used
together in MySQL 5.7 (except in
the FOR SHARE/EXCEPT syntax)
and MySQL 8.0.

● When a lock clause is used
together with the LEFT/RIGHT
[OUTER] JOIN clause, the LEFT
JOIN cannot be used to lock the
right table, and the RIGHT JOIN
clause cannot be used to lock the
left table. In MySQL, tables on
both sides of JOIN can be locked
at the same time.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 289

No. Description Syntax Difference

56 SELECT syntax SELECT ● In GaussDB, when the table alias
in the FROM clause is specified,
the table alias can contain the
column name. In MySQL 5.7, the
table alias cannot contain the
column name. In MySQL 8.0, the
table alias can contain the
column name only when the
subquery is specified.

-- GaussDB
m_db=# DROP TABLE IF EXISTS t1;
DROP TABLE
m_db=# CREATE TABLE t1(a INT, b INT);
CREATE TABLE
m_db=# INSERT INTO t1 VALUES(1,2);
INSERT 0 1
m_db=# SELECT * FROM t1 t2(a, b);
 a | b
---+---
 1 | 2
(1 row)

m_db=# SELECT * FROM (SELECT * FROM t1)
t2(a, b);
 a | b
---+---
 1 | 2
(1 row)

-- MySQL5.7
mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> CREATE TABLE t1(a INT, b INT);
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO t1 VALUES(1,2);
Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM t1 t2(a, b);
ERROR 1064 (42000): You have an error in your
SQL syntax; check the manual that corresponds
to your MySQL server version for the right
syntax to use near '(a, b)' at line 1
mysql> SELECT * FROM (SELECT * FROM t1)
t2(a, b);
ERROR 1064 (42000): You have an error in your
SQL syntax; check the manual that corresponds
to your MySQL server version for the right
syntax to use near '(a, b)' at line 1

-- MySQL8.0
mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected (0.10 sec)

mysql> CREATE TABLE t1(a INT, b INT);
Query OK, 0 rows affected (0.18 sec)

mysql> INSERT INTO t1 VALUES(1,2);
Query OK, 1 row affected (0.03 sec)

mysql> SELECT * FROM t1 t2(a, b);
ERROR 1064 (42000): You have an error in your

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 290

No. Description Syntax Difference

SQL syntax; check the manual that corresponds
to your MySQL server version for the right
syntax to use near '(a, b)' at line 1
mysql> SELECT * FROM (SELECT * FROM t1)
t2(a, b);
+------+------+
| a | b |
+------+------+
| 1 | 2 |
+------+------+
1 row in set (0.00 sec)

● If a query statement does not
contain the FROM clause,
GaussDB supports the WHERE
clause, which is the same as that
in MySQL 8.0. MySQL 5.7 does
not support the WHERE clause.

-- GaussDB
m_db=# SELECT 1 WHERE true;
 1

 1
(1 row)

-- MySQL5.7
mysql> SELECT 1 WHERE true;
ERROR 1064 (42000): You have an error in your
SQL syntax; check the manual that corresponds
to your MySQL server version for the right
syntax to use near 'where true' at line 1

-- MySQL8.0
mysql> SELECT 1 WHERE true;
+---+
| 1 |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 291

No. Description Syntax Difference

57 When statements such
as UNION and GROUP
BY that do not carry the
ORDER BY clause are
used to merge or
aggregate data, the
output data sequence
may not be the same
as that in MySQL
because the executor
operators are different.

SELECT Take the GROUP BY scenario as an
example. If the hashagg operator is
used, the sequence is different from
the original one. You are advised to
add the ORDER BY clause in the
scenario where the data sequence
needs to be ensured.
-- Initialize data.
DROP TABLE IF EXISTS test;
CREATE TABLE test(id INT);
INSERT INTO test VALUES (1),(2),(3),(4),(5);
-- GaussDB
-- If precision transfer is disabled, the ID
sequence is (1 3 2 4 5).
m_db=# SET
m_format_behavior_compat_options= '';
SET
m_db=# SELECT /*+ use_hash_agg*/ id, pi()
FROM test GROUP BY 1,2;
 id | pi
----+-------------------
 1 | 3.141592653589793
 3 | 3.141592653589793
 2 | 3.141592653589793
 4 | 3.141592653589793
 5 | 3.141592653589793
(5 rows)
-- When the precision transfer function is
enabled, the ID sequence changes to (5 4 2 3
1) due to the value change.
m_db=# SET
m_format_behavior_compat_options=
'enable_precision_decimal';
SET
m_db=# SELECT /*+ use_hash_agg*/ id, pi()
FROM test GROUP BY 1,2;
 id | pi
----+----------
 5 | 3.141593
 4 | 3.141593
 2 | 3.141593
 3 | 3.141593
 1 | 3.141593
(5 rows)
-- In MySQL, the ID sequence is the original one.
mysql> SELECT id, pi() FROM test GROUP BY
1,2;
+------+----------+
| id | pi() |
+------+----------+
| 1 | 3.141593 |
| 2 | 3.141593 |
| 3 | 3.141593 |
| 4 | 3.141593 |
| 5 | 3.141593 |
+------+----------+
5 rows in set (0.00 sec)

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 292

3.8.5 DCL

Table 3-34 DCL syntax compatibility

No. Description Syntax Difference

1 Set names with
COLLATE specified.

SET [SESSION |
LOCAL] NAMES
{'charset_name'
[COLLATE
'collation_name'] |
DEFAULT};

In GaussDB, you cannot
specify charset_name to
be different from that of
the database character
set. For details, see "SQL
Reference > SQL Syntax >
SQL Statements > S >
SET" in the M-compatible
Developer Guide.
If no character set is
specified, MySQL reports
an error but GaussDB
does not.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 293

No. Description Syntax Difference

2 DESCRIBE
statements are
supported.

{DESCRIBE | DESC}
tbl_name
[col_name | wild]

● User permission
verification is different
from that of MySQL.
– In GaussDB, you

need the USAGE
permission on the
schema of a
specified table and
table-level or
column-level
permissions on the
specified table.
Only information
about columns with
the SELECT, INSERT,
UPDATE,
REFERENCES, and
COMMENT
permissions is
displayed.

– In MySQL, you
need table-level or
column-level
permissions on a
specified table.
Only information
about columns with
the SELECT, INSERT,
UPDATE,
REFERENCES, and
COMMENT
permissions is
displayed.

● If character string
comparison is involved
in fuzzy match, the
Field field uses the
character set utf8mb4
and collation
utf8mb4_general_ci.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 294

No. Description Syntax Difference

3 START
TRANSACTION
supports consistent
read snapshot.

START
TRANSACTION
[
{
ISOLATION LEVEL
{ READ
COMMITTED |
SERIALIZABLE |
REPEATABLE
READ }
| { READ WRITE |
READ ONLY } |
WITH CONSISTENT
SNAPSHOT
} [, ...]
];

● In MySQL, a
transaction at the
repeatable read
isolation level starts
snapshot read only
after the first SELECT
statement is executed.
In GaussDB, once a
transaction is started,
not only the first
SELECT statement
performs snapshot
read, but also the first
executed DDL, DML,
or DCL statement
creates a consistent
read snapshot of the
transaction.

● In GaussDB, START
TRANSACTION allows
you to set the
isolation level,
transaction access
mode, and consistent
snapshot for multiple
times. A new setting
overwrites the old one
and takes effect.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 295

No. Description Syntax Difference

4 SET sets user
variables.

SET @var_name :=
expr

● In MySQL, user-
defined variable
names can be escaped
using escape
characters or double
quotation marks, but
this feature is not
supported in GaussDB.
Variable names
enclosed in single
quotation marks
cannot contain other
single quotation
marks. For example,
@'', @''', and @'\'' are
not supported. During
parsing, the single
quotation marks (')
cannot be matched or
an error will be
reported. For example:
-- An error is reported during
parsing.
db_mysql=# SET @'''' = 1;
ERROR: syntax error at or
near "@"
LINE 1: SET @'''' = 1;

-- The single quotation
marks (') cannot be matched
during parsing.
db_mysql=# SET @'\'' = 1;
db_mysql'#

Variable names
enclosed in double
quotation marks
cannot contain double
quotation marks (").
For example, @"",
@"""" and @"\"" are
not supported. The
double quotation
marks cannot be
matched or an error
will be reported
during parsing. For
example:
-- An error is reported during
parsing.
db_mysql=# SET @"""" = 1;
ERROR: syntax error at or
near "@"
LINE 1: SET @"""" = 1;

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 296

No. Description Syntax Difference

-- The double quotation
marks (") cannot be
matched during parsing.
db_mysql=# SET @"\"" = 1;
db_mysql"#

The variable name
enclosed by
backquotes cannot
contain backquotes.
For example, @````,
@`````, and @`\`` are
not supported. During
parsing, the
backquotes (`) cannot
be matched or an
error will be reported.
For example:
-- An error is reported during
parsing.
db_mysql=# SET @```` = 1;
ERROR: syntax error at or
near "@"
LINE 1: SET @```` = 1;

-- The backquotes (`) cannot
be matched during parsing.
db_mysql=# SET @`\`` = 1;
db_mysql`#

● For example, set
@var_name1 =
@var_name2 :=
@var_name3 =
@var_name4 := expr;
can be used to assign
consecutive values in
MySQL, but cannot in
GaussDB.
db_mysql=# set @a := @b :=
@c = @d := 1;
ERROR: user_defined
variables cannot be set, such
as @var_name := expr is not
supported.

● expr can be an
aggregate function in
GaussDB but not in
MySQL.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 297

No. Description Syntax Difference

5 SET sets system
parameters.

SET [SESSION |
@@SESSION. | @@
| LOCAL |
@@LOCAL.]
{config_parameter
{ TO | = } { expr |
DEFAULT } | FROM
CURRENT }};

● When
config_parameter is a
system parameter of
the BOOLEAN type:
– The parameter

value can be set to
'1' or '0' or 'true'
or 'false' in the
character string
format in M-
compatible
databases but
cannot in MySQL.

– If the parameter
value is set to the
subquery result,
when the result is
'true' or 'false' and
the non-integer
type is 1 or 0, the
setting is successful
in M-compatible
databases but fails
in MySQL. When
the query result is
NULL, the setting
in M-compatible
databases fails but
is successful in
MySQL.

3.8.6 Other Statements

Table 3-35 Compatibility of other syntaxes

No. Description Syntax Difference

1 Transaction-
related
syntax

Default
database
isolation level

The default isolation level of M-
compatible mode is READ COMMITTED,
and that of MySQL is REPEATABLE
READ.
Only the READ COMMITTED and
REPEATABLE READ isolation levels take
effect in M-compatible databases.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 298

No. Description Syntax Difference

2 Transaction-
related
syntax

Transaction
nesting

In M-compatible mode, nested
transactions are not automatically
committed, but in MySQL, they are
automatically committed.

3 Transaction-
related
syntax

Autocommit In M-compatible mode, GaussDB is
used for storage and the GaussDB
transaction mechanism is inherited. If
DDL or DCL is executed in a
transaction, the transaction is not
automatically committed. In MySQL, if
DDL, DCL, management-related, or
lock-related statements are executed,
the transaction is automatically
committed.

4 Transaction-
related
syntax

Rollback is
required after
an error is
reported.

If an error is reported for a transaction
in an M-compatible database, rollback
needs to be performed. There is no
such restriction in MySQL.

5 Transaction-
related
syntax

Lock
mechanism

The M-compatible lock mechanism can
be used only in transaction blocks.
There is no such restriction in MySQL.

6 Lock
mechanism

Lock
mechanism

● After the read lock is obtained, write
operations cannot be performed on
the current session in MySQL, but
write operations can be performed
on the current session in an M-
compatible database.

● After MySQL locks a table, an error
is reported when other tables are
read. M-compatible does not have
such restriction.

● In MySQL, if the lock of the same
table is obtained in the same
session, the previous lock is
automatically released and the
transaction is committed. M-
compatible databases do not have
this mechanism.

● M-compatible databases allow LOCK
TABLE to be used only inside a
transaction block, and have no
UNLOCK TABLE command. Locks are
always released at the end of
transactions.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 299

No. Description Syntax Difference

7 PBE PBE ● In an M-compatible database, if a
PREPARE statement with the same
name is repeatedly created, an error
is reported, indicating that the
statement already exists. You need
to delete the existing statement first.
In MySQL, the old statement will be
overwritten.

● M-compatible databases and MySQL
report errors in different phases,
such as the parsing layer and
execution layer, during SQL
statement execution. PREPARE
statements process prepared
statements till the parsing layer.
Therefore, in abnormal scenarios in
PBE, an M-compatible database may
be different from that in MySQL in
terms of whether the error is
reported in the PREPARE or EXECUTE
phase.

3.8.7 Users and Permissions

Overview
In M-compatible mode, the behaviors and syntaxes related to user and permission
control inherit the GaussDB mechanism but are not synchronized with those in
MySQL.

User and permission behaviors are the same as those in GaussDB. For details, see
"Database Security Management > Managing Users and Their Permissions" in
Developer Guide.

Some syntaxes for users and permissions are tailored in GaussDB. For details
about the syntaxes, see "SQL Reference > SQL Syntax > SQL Statements" in M-
Compatibility Developer Guide. For details about the syntax differences between
an M-compatible database and GaussDB, see Table 3-36.

When a user is created, a schema with the same name as the user is automatically
created in an M-compatible database, but it is not created in MySQL.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 300

Table 3-36 Syntax differences between an M-compatible database and GaussDB

No
.

Syntax Description Difference

1 CREATE ROLE Creates a role. In an M-compatible
database:
Options involving the
following keywords
cannot be specified:
ENCRYPTED,
UNENCRYPTED,
RESOURCE POOL, PERM
SPACE, TEMP SPACE,
and SPILL SPACE.

2 CREATE USER Creates a user.

3 CREATE GROUP Creates a user group.
CREATE GROUP is the
alias of CREATE ROLE
and is not
recommended.

4 ALTER ROLE Modifies role attributes.

5 ALTER UER Modifies user attributes.

6 ALTER GROUP Modifies the attributes
of a user group.

-

7 DROP ROLE Deletes a role. -

8 DROP USER Deletes a user. -

9 DROP GROUP Deletes a user group. -

10 DROP OWNED Deletes the database
objects owned by a
database role.

-

11 REASSIGN OWNED Changes the owner of a
database object.

This syntax is not
supported in an M-
compatible database.

12 GRANT Grants permissions to
roles and users.

In an M-compatible
database, permissions on
objects such as functions,
stored procedures,
tablespaces, and
database links cannot be
granted or revoked.

13 REVOKE Revokes permissions
from one or more roles.

14 ALTER DEFAULT
PRIVILEGES

Sets the permissions that
will be granted to
objects created in the
future. (It does not affect
permissions granted to
existing objects.)

This syntax is not
supported in an M-
compatible database.

Differences
● Syntax format differences

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 301

For details about the M-compatible permission granting syntaxes, see "SQL
Reference > SQL Syntax > G > GRANT" in M-Compatibility Developer Guide.
The permission granting syntax in MySQL is as follows:
-- Global, database-level, table-level, and stored procedure–level permission granting syntax
GRANT
 priv_type [(column_list)]
 [, priv_type [(column_list)]] ...
 ON [object_type] priv_level
 TO user [auth_option] [, user [auth_option]] ...
 [REQUIRE {NONE | tls_option [[AND] tls_option] ...}]
 [WITH {GRANT OPTION | resource_option} ...]

-- Syntax for granting permissions to a user proxy
GRANT PROXY ON user
 TO user [, user] ...
 [WITH GRANT OPTION]

object_type: {
 TABLE
 | FUNCTION
 | PROCEDURE
}

priv_level: {
 *
 | *.*
 | db_name.*
 | db_name.tbl_name
 | tbl_name
 | db_name.routine_name
}

user:
 'user_name'@'host_name'

auth_option: {
 IDENTIFIED BY 'auth_string'
 | IDENTIFIED WITH auth_plugin
 | IDENTIFIED WITH auth_plugin BY 'auth_string'
 | IDENTIFIED WITH auth_plugin AS 'auth_string'
 | IDENTIFIED BY PASSWORD 'auth_string'
}

tls_option: {
 SSL
 | X509
 | CIPHER 'cipher'
 | ISSUER 'issuer'
 | SUBJECT 'subject'
}

resource_option: {
 | MAX_QUERIES_PER_HOUR count
 | MAX_UPDATES_PER_HOUR count
 | MAX_CONNECTIONS_PER_HOUR count
 | MAX_USER_CONNECTIONS count
}

● Differences in types of permissions granted
In MySQL, the following types of permissions can be granted.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 302

Table 3-37 Types of permissions that can be granted in MySQL

Permission Type Definition and Permission Level

ALL [PRIVILEGES] Grants all permissions of a specified
access level, except GRANT OPTION
and PROXY.

ALTER Enables ALTER TABLE. Level: global,
database, and table.

ALTER ROUTINE Allows you to modify or delete
stored procedures. Level: global,
database, and routine.

CREATE Enables database and table creation.
Level: global, database, and table.

CREATE ROUTINE Enables stored procedure creation.
Level: global and database.

CREATE TABLESPACE Allows you to create, modify, or
delete tablespaces or log file groups.
Level: global.

CREATE TEMPORARY TABLES Enables CREATE TEMPORARY
TABLE. Level: global and database.

CREATE USER Enables CREATE USER, DROP USER,
RENAME USER, and REVOKE ALL
PRIVILEGES. Level: global.

CREATE VIEW Allows you to create or modify
views. Level: global, database, and
table.

DELETE Enables DELETE. Level: global,
database, and table.

DROP Allows you to delete databases,
tables, or views. Level: global,
database, and table.

EVENT Enable scheduled tasks. Level: global
and database.

EXECUTE Allows you to execute stored
procedures. Level: global, database,
and stored procedure.

FILE Allows you to enable the server to
read or write files. Level: global.

GRANT OPTION Allows you to grant permissions to
or remove permissions from other
accounts. Level: global, database,
table, stored procedure, and proxy.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 303

https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_all
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_proxy
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_alter
https://dev.mysql.com/doc/refman/5.7/en/alter-table.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_alter-routine
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create-routine
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create-tablespace
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create-temporary-tables
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/create-table.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create-user
https://dev.mysql.com/doc/refman/5.7/en/create-user.html
https://dev.mysql.com/doc/refman/5.7/en/drop-user.html
https://dev.mysql.com/doc/refman/5.7/en/rename-user.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_create-view
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_delete
https://dev.mysql.com/doc/refman/5.7/en/delete.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_drop
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_event
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_execute
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_file
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_grant-option

Permission Type Definition and Permission Level

INDEX Allows you to create or delete
indexes. Level: global, database, and
table.

INSERT Enables INSERT. Level: global,
database, table, and column.

LOCK TABLES Enables LOCK TABLES on tables with
the SELECT permission. Level: global
and database.

PROCESS Allows you to view all running
threads through SHOW
PROCESSLIST. Level: global.

PROXY Enables a user proxy. Level: from
user to user.

REFERENCES Enables foreign key creation. Level:
global, database, table, and column.

RELOAD Enables FLUSH. Level: global.

REPLICATION CLIENT Allows you to query the location of
the source server or replica server.
Level: global.

REPLICATION SLAVE Allows replicas to read binary logs
from the source. Level: global.

SELECT Enables SELECT. Level: global,
database, table, and column.

SHOW DATABASES Enables SHOW DATABASES to
display all databases. Level: global.

SHOW VIEW Enables SHOW CREATE VIEW.
Level: global, database, and table.

SHUTDOWN Enables mysqladmin shutdown.
Level: global.

SUPER Enables other management
operations, such as the CHANGE
MASTER TO, KILL, PURGE BINARY
LOGS, SET GLOBAL, and
mysqladmin debug commands.
Level: global.

TRIGGER Enables TRIGGER. Level: global,
database, and table.

UPDATE Enables UPDATE. Level: global,
database, table, and column.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 304

https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_index
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_insert
https://dev.mysql.com/doc/refman/5.7/en/insert.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_lock-tables
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/show-processlist.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_proxy
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_references
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/5.7/en/flush.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_replication-client
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_replication-slave
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/5.7/en/select.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_show-databases
https://dev.mysql.com/doc/refman/5.7/en/show-databases.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_show-view
https://dev.mysql.com/doc/refman/5.7/en/show-create-view.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_shutdown
https://dev.mysql.com/doc/refman/5.7/en/mysqladmin.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/change-master-to.html
https://dev.mysql.com/doc/refman/5.7/en/kill.html
https://dev.mysql.com/doc/refman/5.7/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/5.7/en/purge-binary-logs.html
https://dev.mysql.com/doc/refman/5.7/en/set-variable.html
https://dev.mysql.com/doc/refman/5.7/en/mysqladmin.html
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_trigger
https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/5.7/en/update.html

Permission Type Definition and Permission Level

USAGE Equivalent to "no privilege".

M-compatible databases support the following permissions by level:

Table 3-38 Types of permissions that can be granted in M-compatible
databases

Object Permissions That Can Be Granted

Schema CREATE, USAGE, ALTER, DROP, and
COMMENT

Table and view SELECT, INSERT, UPDATE, DELETE,
TRUNCATE, REFERENCES, TRIGGER,
ALTER, DROP, COMMENT, INDEX,
and VACUUM

Column SELECT, INSERT, UPDATE,
REFERENCES, and COMMENT

Sequence SELECT, USAGE, UPDATE, ALTER,
DROP, and COMMENT

● The schema-level objects to which permissions are granted are represented by

'dbname.*' in MySQL, but '{DATABASE | SCHEMA} dbname' in M-
compatible databases.

● In MySQL, a username consists of two parts: username@hostname, but a
username is only itself in M-compatible databases.

● MySQL allows you to modify user authentication, secure connection, and
resource parameter attributes (including auth_option, tls_option, and
resource option) with the GRANT syntax. In M-compatible databases,
permission granting syntax does not support this function, and you need to
use CREATE USER and ALTER USER to set user attributes.

● MySQL supports permission granting with a user proxy. GRANT PROXY ON is
used to manage permissions of users in a unified manner. MySQL 5.7 does
not provide the role mechanism, but MySQL 8.0 and M-compatible databases
provide the role mechanism. If a role can manage and control the permissions
of users in a unified manner, it can replace GRANT PROXY ON.

● M-compatible databases have a concept called public. All users have public
permissions and they can query some system catalogs and system views.
Users can grant or revoke public permissions. In MySQL, newly created users
have only the global usage permission, which is almost low to none. They
have only the permission to connect to the database and query the
information_schema database.

● In M-compatible databases, the owner of an object has all permissions on the
object by default. For security purposes, the owner can discard some
permissions. However, ALTER, DROP, COMMENT, INDEX, VACUUM, and re-
grantable permissions on the object are implicitly inherent permissions of the

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 305

https://dev.mysql.com/doc/refman/5.7/en/privileges-provided.html#priv_usage

owner: MySQL does not have a concept called owner. Even if a user creates a
table, the user cannot perform operations such as IUD on the table without
being granted the corresponding permissions.

● In MySQL, All users have the USAGE permission, which indicates no
permission. When REVOKE or GRANT USAGE is executed, no modification is
performed. In M-compatible databases, the USAGE permission has the
following meanings:
– For schemas, USAGE allows access to objects contained in the schema.

Without this permission, it is still possible to see the object names.
– For sequences, USAGE allows use of the nextval function.

● In M-compatible databases, administrator roles can be set for users, including
system administrator (SYSADMIN), security administrator (CREATEROLE),
audit administrator (AUDITADMIN), monitor administrator (MONADMIN),
O&M administrator (OPRADMIN), and security policy administrator
(POLADMIN). By default, the system administrator with the SYSADMIN
attribute has the highest permission in the system. After separation of duties
is enabled, the system administrator does not have the CREATEROLE attribute
(security administrator) or the AUDITADMIN attribute (audit administrator).
That is, the system administrator can neither create roles or users, nor view or
maintain database audit logs. In MySQL, administrator roles cannot be set for
users, and there is no design for separation of duties.

● In M-compatible databases, the ANY permission can be granted to a user,
indicating that the user can have the corresponding permission in non-system
mode, including CREATE ANY TABLE, SELECT ANY TABLE, and CREATE ANY
INDEX. In MySQL, ANY permission cannot be granted.

● MySQL provides SHOW GRANTS to query user permissions. In M-compatible
databases, you can run a gsql client meta-command '\l+', '\dn+', or '\dp' to
query permission information, or query related columns in system catalogs
such as pg_namespace, pg_class, and pg_attribute for permission information.

● When a database, table, or column is deleted from MySQL, the related
permission granting information is still retained in the system catalog. If an
object with the same name is created again, the user still has the original
permissions. In M-compatible databases, when a database, table, or column is
deleted, related permission granting information is deleted. If an object with
the same name is created again, permissions need to be granted again.

● When granting database-level permissions, MySQL supports fuzzy match of
database names using underscores (_) and percent signs (%). However, M-
compatible databases do not support fuzzy match of object names using
special characters such as underscores (_) or percent signs (%), which are
identified as common characters.

● In MySQL, if a user specified in the GRANT statement does not exist, a user
account is created by default (this feature has been removed from MySQL
8.0). In M-compatible databases, permissions cannot be granted to users who
are not created.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 306

3.8.8 System Catalogs and System Views

Table 3-39 Differences between M-compatible databases and GaussDB in terms
of system catalogs or views

No
.

System Catalog or
System View

Column Difference

1 information_schema.
columns

generation_expression The output of this
column varies due to
different string
concatenation logics of
expressions in M-
compatible mode and
MySQL.

2 information_schema.
columns

data_type The output result of this
column in M-compatible
mode, having not been
modified due to the data
type format_type
involved, is different from
that in MySQL.

3 information_schema.
columns

column_type The output result of this
column in M-compatible
mode, having not been
modified due to the data
type format_type
involved, is different from
that in MySQL.

4 information_schema.
tables

engine In M-compatible mode:
● ENGINE is aligned

with data of
information_schema.e
ngines.

● In some system
catalogs, ENGINE is
left empty.

● If the default table is
an ASTORE table and
STORAGE_TYPE is not
specified, ENGINE is
empty.

5 information_schema.
tables

version This column is not
supported in M-
compatible mode.

6 information_schema.
tables

row_format This column is not
supported in M-
compatible mode.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 307

No
.

System Catalog or
System View

Column Difference

7 information_schema.
tables

avg_row_length In M-compatible mode,
the result of dividing the
size of the data files by
the number of all tuples
(including live tuples and
dead tuples) is used. If
there is no tuple in the
table, the value is null.

8 information_schema.
tables

max_data_length This column is not
supported in M-
compatible mode.

9 information_schema.
tables

data_free In M-compatible mode, it
indicates the result of
(Number of dead tuples/
Total number of tuples) x
Data file size. If there is
no tuple in the table, the
value is null.

10 information_schema.
tables

check_time This column is not
supported in M-
compatible mode.

11 information_schema.
tables

create_time In M-compatible mode,
this behavior of column
is different from that in
MySQL. When a view is
created in MySQL, this
column is set to null. In
M-compatible mode, the
actual table creation time
is displayed. The value is
null if it is a table or
view provided by the
database.

12 information_schema.
tables

update_time The value is null if it is a
table or view provided by
the M-compatible
database.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 308

No
.

System Catalog or
System View

Column Difference

13 information_schema.
tables

table_collation In M-compatible mode,
this field is different from
that in MySQL. The value
is null if the table
specifies a view. The
value is null if the
COLLATE clause is not
used to specify the
collation of columns
when the specified table
is created.

14 information_schema.
statistics

collation The value can only be A
or D but not NULL in M-
compatible mode.

15 information_schema.
statistics

packed This column is not
supported in M-
compatible mode.

16 information_schema.
statistics

sub_part This column is not
supported in M-
compatible mode.

17 information_schema.
statistics

comment This column is not
supported in M-
compatible mode.

18 information_schema.
partitions

subpartition_name In M-compatible mode, if
a partition is not a
level-2 partition, the
value is null.

19 information_schema.
partitions

subpartition_ordinal_p
osition

In M-compatible mode, if
a partition is not a
level-2 partition, the
value is null.

20 information_schema.
partitions

partition_method In M-compatible mode:
Partitioning policy. If the
partition is not a level-1
partition, the value is
null.
● 'r': range partition.
● 'i': interval partition.
● 'l': list partition.
● 'h': hash partition

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 309

No
.

System Catalog or
System View

Column Difference

21 information_schema.
partitions

subpartition_method In M-compatible mode:
Level-2 partitioning
policy. If a partition is not
a level-2 partition, the
value is null.
● 'r': range partition.
● 'i': interval partition.
● 'l': list partition.
● 'h': hash partition

22 information_schema.
partitions

partition_description In M-compatible mode,
level-1 partitions and
level-2 partitions are
distinguished.

23 information_schema.
partitions

partition_expression This column is not
supported in M-
compatible mode.

24 information_schema.
partitions

subpartition_expressio
n

This column is not
supported in M-
compatible mode.

25 information_schema.
partitions

data_length This column is not
supported in M-
compatible mode.

26 information_schema.
partitions

max_data_length This column is not
supported in M-
compatible mode.

27 information_schema.
partitions

index_length This column is not
supported in M-
compatible mode.

28 information_schema.
partitions

data_free This column is not
supported in M-
compatible mode.

29 information_schema.
partitions

create_time This column is not
supported in M-
compatible mode.

30 information_schema.
partitions

update_time This column is not
supported in M-
compatible mode.

31 information_schema.
partitions

check_time This column is not
supported in M-
compatible mode.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 310

No
.

System Catalog or
System View

Column Difference

32 information_schema.
partitions

checksum This column is not
supported in M-
compatible mode.

33 information_schema.
partitions

partition_comment This column is not
supported in M-
compatible mode.

34 information_schema.
partitions

nodegroup This column is not
supported in M-
compatible mode.

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 311

NO TE

● The precision range cannot be specified for the command output of the integer type in
a view. For example, the bigint(1) type in MySQL corresponds to the bigint type in M-
compatible mode, and the bigint(21) unsigned type in MySQL corresponds to the bigint
unsigned type in M-compatible mode.

● The int type in MySQL corresponds to the integer type in M-compatible mode.
● This version does not support or display Column_priv column in the

m_schema.columns_priv view, Table_priv,Column_priv column in the
m_schema.tables_priv view, Routine_type,Proc_priv column in the m_schema.procs_priv
view, the type,language,sql_data_access,is_deterministic,security_type,sql_mode
column in the m_schema.proc view, or the type column in the m_schema.func view.

● table_rows, avg_row_length, data_length, data_free, index_length, and cardinality in
information_schema.tables and information_schema.statistics are obtained based on
statistics. Therefore, run ANALYZE to update statistics before viewing them. (If data is
updated in the database, you are advised to delay running ANALYZE.)

● The index columns contained in information_schema.statistics must be complete table
columns in the created indexes. If the index columns are expressions, they are not in this
view.

● table_row and avg_row_length in information_schema.partitions are obtained based
on statistics. Before viewing the value, run ANALYZE to update the statistics. (If data is
updated in the database, you are advised to delay running ANALYZE.)

● In information_schema.partitions, level-1 and level-2 partitions are displayed separately.
● The format of the grantee column supported in MySQL is ' user_name '@' host_name '.

In the M-compatible database, it is the name of the user or role to which the permission
is granted.

● For the host column supported in the M-compatible database, the hostname of the
current node is returned.

● In MySQL, you need the permission before viewing m_schema.tables_priv,
information_schema.user_privileges, information_schema.schema_privileges,
information_schema.table_privileges, information_schema.column_privileges,
m_schema.columns_priv, m_schema.func, and m_schema.procs_priv. In the M-
compatible database, you can view them with the default permission. For example, for
table t1, you need the corresponding permission in MySQL so that you can view the
corresponding permission information in the permission view. In the M-compatible
database, you can view the permission information related to table t1 in the view.

● A system view in m_schema is a system catalog in MySQL.
● The collations of VIEW_DEFINITION in information_schema.views and

ROUTINE_DEFINITION in information_schema.routines are not controlled.
● For the view fields of the character type listed in "Schemas" in M-Compatibility

Developer Guide, the character set is utf8mb4, and the collation is utf8mb4_bin or
utf8mb4_general_ci, and the collation priority is the priority of columns of data types
that support collation described in "SQL Reference > Character Set and Collations >
Rules for Combining Character Sets and Collations" in M-Compatibility Developer Guide.
These features are different from those in MySQL.

3.9 Unplanned Application Lossless and Transparent

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 312

3.9.1 Flow Control Functions

Table 3-40 Flow control functions

MySQL Support Unplanned ALT (Yes/No)

IF() Supported

IFNULL() Supported

NULLIF() Supported

3.9.2 Date and Time Functions

Table 3-41 Date and time functions

MySQL Support Unplanned ALT (Yes/No)

ADDDATE() Supported

ADDTIME() Supported

CONVERT_TZ() Supported

CURDATE() Supported

CURRENT_DATE()/CURRENT_DATE Supported

CURRENT_TIME()/CURRENT_TIME Supported

CURRENT_TIMESTAMP()/
CURRENT_TIMESTAMP

Supported

CURTIME() Supported

DATE() Supported

DATE_ADD() Supported

DATE_FORMAT() Supported

DATE_SUB() Supported

DATEDIFF() Supported

DAY() Supported

DAYNAME() Supported

DAYOFMONTH() Supported

DAYOFWEEK() Supported

DAYOFYEAR() Supported

EXTRACT() Supported

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 313

MySQL Support Unplanned ALT (Yes/No)

FROM_DAYS() Supported

FROM_UNIXTIME() Supported

GET_FORMAT() Supported

HOUR() Supported

LAST_DAY() Supported

LOCALTIME()/LOCALTIME Supported

LOCALTIMESTAMP/
LOCALTIMESTAMP()

Supported

MAKEDATE() Supported

MAKETIME() Supported

MICROSECOND() Supported

MINUTE() Supported

MONTH() Supported

MONTHNAME() Supported

NOW() Supported

PERIOD_ADD() Supported

PERIOD_DIFF() Supported

QUARTER() Supported

SEC_TO_TIME() Supported

SECOND() Supported

STR_TO_DATE() Supported

SUBDATE() Supported

SUBTIME() Supported

SYSDATE() Supported

TIME() Supported

TIME_FORMAT() Supported

TIME_TO_SEC() Supported

TIMEDIFF() Supported

TIMESTAMP() Supported

TIMESTAMPADD() Supported

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 314

MySQL Support Unplanned ALT (Yes/No)

TIMESTAMPDIFF() Supported

TO_DAYS() Supported

TO_SECONDS() Supported

UNIX_TIMESTAMP() Supported

UTC_DATE() Supported

UTC_TIME() Supported

UTC_TIMESTAMP() Supported

WEEK() Supported

WEEKDAY() Supported

WEEKOFYEAR() Supported

YEAR() Supported

YEARWEEK() Supported

3.9.3 String Functions

Table 3-42 String functions

MySQL Support Unplanned ALT (Yes/No)

ASCII() Supported

BIT_LENGTH() Supported

CHAR_LENGTH() Supported

CHARACTER_LENGTH() Supported

CONCAT() Supported

CONCAT_WS() Supported

HEX() Supported

LENGTH() Supported

LPAD() Supported

MD5() Supported

RANDOM_BYTES() Supported

REPEAT() Supported

REPLACE() Supported

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 315

MySQL Support Unplanned ALT (Yes/No)

RPAD() Supported

SHA()/SHA1() Supported

SHA2() Supported

SPACE() Supported

STRCMP() Supported

FIND_IN_SET() Supported

LCASE() Supported

LEFT() Supported

LOWER() Supported

LTRIM() Supported

REVERSE() Supported

RIGHT() Supported

RTRIM() Supported

SUBSTR() Supported

SUBSTRING() Supported

SUBSTRING_INDEX() Supported

TRIM() Supported

UCASE() Supported

UPPER() Supported

UNHEX() Supported

FIELD() Supported

COMPRESS() Supported

UNCOMPRESS() Supported

UNCOMPRESS_LENGTH() Supported

EXPORT_SET() Supported

POSITION() Supported

LOCATE() Supported

CHAR() Supported

ELT() Supported

FORMAT() Supported

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 316

MySQL Support Unplanned ALT (Yes/No)

BIN() Supported

MAKE_SET() Supported

TO_BASE64() Supported

FROM_BASE64() Supported

ORD() Supported

MID() Supported

QUOTE() Supported

INSERT() Supported

INSTR() Supported

3.9.4 Forced Conversion Functions

Table 3-43 Forced conversion functions

MySQL Support Unplanned ALT (Yes/No)

CAST() Supported

CONVERT() Supported

3.9.5 Encryption Functions

Table 3-44 Encryption functions

MySQL Support Unplanned ALT (Yes/No)

AES_DECRYPT() Supported

AES_ENCRYPT() Supported

PASSWORD() Supported

3.9.6 Comparison Functions

Table 3-45 Comparison functions

MySQL Support Unplanned ALT (Yes/No)

COALESCE() Supported

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 317

MySQL Support Unplanned ALT (Yes/No)

INTERVAL() Supported

GREATEST() Supported

LEAST() Supported

ISNULL() Supported

3.9.7 Aggregate Functions

Table 3-46 Aggregate functions

MySQL Support Unplanned ALT (Yes/No)

AVG() Supported

BIT_AND() Supported

BIT_OR() Supported

BIT_XOR() Supported

COUNT() Supported

GROUP_CONCAT() Supported

MAX() Supported

MIN() Supported

SUM() Supported

STD() Supported

3.9.8 JSON Functions

Table 3-47 JSON functions

MySQL Support Unplanned ALT (Yes/No)

JSON_APPEND() Supported

JSON_ARRAY() Supported

JSON_ARRAY_APPEND() Supported

JSON_ARRAY_INSERT() Supported

JSON_CONTAINS() Supported

JSON_CONTAINS_PATH() Supported

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 318

MySQL Support Unplanned ALT (Yes/No)

JSON_DEPTH() Supported

JSON_EXTRACT() Supported

JSON_INSERT() Supported

JSON_KEYS() Supported

JSON_LENGTH() Supported

JSON_MERGE() Supported

JSON_MERGE_PATCH() Supported

JSON_MERGE_PRESERVE() Supported

JSON_OBJECT() Supported

JSON_QUOTE() Supported

JSON_REMOVE() Supported

JSON_REPLACE() Supported

JSON_SEARCH() Supported

JSON_SET() Supported

JSON_TYPE() Supported

JSON_UNQUOTE() Supported

JSON_VALID() Supported

3.9.9 Window Functions

Table 3-48 Window functions

MySQL Support Unplanned ALT (Yes/No)

LAG() Supported

LEAD() Supported

ROW_NUMBER() Supported

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 319

3.9.10 Arithmetic Functions

Table 3-49 Arithmetic functions

MySQL Support Unplanned ALT (Yes/No)

ABS() Supported

ACOS() Supported

ASIN() Supported

ATAN() Supported

ATAN2() Supported

CEILING() Supported

COS() Supported

DEGREES() Supported

EXP() Supported

FLOOR() Supported

LN() Supported

LOG() Supported

LOG10() Supported

LOG2() Supported

PI() Supported

POW() Supported

POWER() Supported

RAND() Supported

SIGN() Supported

SIN() Supported

SQRT() Supported

TAN() Supported

TRUNCATE() Supported

CEIL() Supported

CRC32() Supported

CONV() Supported

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 320

3.9.11 Network Address Functions

Table 3-50 Network address functions

MySQL Support Unplanned ALT (Yes/No)

INET_ATON() Supported

INET_NTOA() Supported

INET6_ATON() Supported

INET6_NTOA() Supported

IS_IPV6() Supported

IS_IPV4() Supported

3.9.12 Other Functions

Table 3-51 Other functions

MySQL Support Unplanned ALT (Yes/No)

DATABASE() Supported

UUID() Supported

UUID_SHORT() Supported

ANY_VALUE() Supported

SLEEP() Supported

COLLATION() Supported

FOUND_ROWS() Supported

ROW_COUNT() Supported

SYSTEM_USER() Supported

DEFAULT() Supported

BENCHMARK() Supported

GaussDB
MySQL Compatibility(Centralized) 3 MySQL Compatibility in M-Compatible Mode

Issue 01 (2024-12-05) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 321

	Contents
	1 Introduction
	2 MySQL Compatibility in B-Compatible Mode
	2.1 MySQL Compatibility Overview
	2.2 Data Types
	2.2.1 Numeric Data Types
	2.2.2 Date and Time Data Types
	2.2.3 String Data Types
	2.2.4 Binary Data Types
	2.2.5 JSON Data Type
	2.2.6 Attributes Supported by Data Types
	2.2.7 Data Type Conversion

	2.3 System Functions
	2.3.1 Flow Control Functions
	2.3.2 Date and Time Functions
	2.3.3 String Functions
	2.3.4 Forced Conversion Functions
	2.3.5 Encryption Functions
	2.3.6 Information Functions
	2.3.7 JSON Functions
	2.3.8 Aggregate Functions
	2.3.9 Arithmetic Functions
	2.3.10 Other Functions

	2.4 Operators
	2.5 Character Sets
	2.6 Collation Rules
	2.7 Expressions
	2.8 SQL
	2.8.1 DDL
	2.8.2 DML
	2.8.3 DCL

	2.9 Drivers
	2.9.1 JDBC
	2.9.1.1 JDBC API Reference

	3 MySQL Compatibility in M-Compatible Mode
	3.1 MySQL Compatibility Overview
	3.2 Data Types
	3.2.1 Numeric Data Types
	3.2.2 Date and Time Data Types
	3.2.3 String Data Types
	3.2.4 Binary Data Types
	3.2.5 JSON
	3.2.6 Attributes Supported by Data Types
	3.2.7 Data Type Conversion

	3.3 System Functions
	3.3.1 Flow Control Functions
	3.3.2 Date and Time Functions
	3.3.3 String Functions
	3.3.4 Forced Conversion Functions
	3.3.5 Encryption Functions
	3.3.6 Comparison Functions
	3.3.7 Aggregate Functions
	3.3.8 JSON Functions
	3.3.9 Window Functions
	3.3.10 Arithmetic Functions
	3.3.11 Network Address Functions
	3.3.12 Other Functions

	3.4 Operators
	3.5 Character Sets
	3.6 Collation Rules
	3.7 Transactions
	3.8 SQL
	3.8.1 Keywords
	3.8.2 Identifiers
	3.8.3 DDL
	3.8.4 DML
	3.8.5 DCL
	3.8.6 Other Statements
	3.8.7 Users and Permissions
	3.8.8 System Catalogs and System Views

	3.9 Unplanned Application Lossless and Transparent
	3.9.1 Flow Control Functions
	3.9.2 Date and Time Functions
	3.9.3 String Functions
	3.9.4 Forced Conversion Functions
	3.9.5 Encryption Functions
	3.9.6 Comparison Functions
	3.9.7 Aggregate Functions
	3.9.8 JSON Functions
	3.9.9 Window Functions
	3.9.10 Arithmetic Functions
	3.9.11 Network Address Functions
	3.9.12 Other Functions

