Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive
On this page

Show all

HLL Types

Updated on 2024-05-21 GMT+08:00

HyperLoglog (HLL) is an approximation algorithm for efficiently counting the number of distinct values in a dataset. It features faster computing and lower space usage. You only need to store HLL data structures, instead of data sets. When new data is added to a dataset, make hash calculation on the data and insert the result to an HLL. Then, you can obtain the final result based on the HLL.

Table 1 compares HLL with other algorithms.

Table 1 Comparison between HLL and other algorithms

Item

Sorting Algorithm

Hash Algorithm

HLL

Time complexity

O(nlogn)

O(n)

O(n)

Space complexity

O(n)

O(n)

log(logn)

Error rate

0

0

≈0.8%

Storage space requirement

Size of original data

Size of original data

The maximum size is 16 KB by default.

HLL has advantages over others in the computing speed and storage space requirement. In terms of time complexity, the sorting algorithm needs O(nlogn) time for sorting, and the hash algorithm and HLL need O(n) time for full table scanning. In terms of storage space requirements, the sorting algorithm and hash algorithm need to store raw data before collecting statistics, whereas the HLL algorithm needs to store only the HLL data structures rather than the raw data, and thereby occupying a fixed space of about 16 KB.

NOTICE:
  • In the current default specifications, the maximum number of distinct values that can be calculated is about 1.1e + 15, and the error rate is 0.8%. If the calculation result exceeds the maximum, the error rate of the calculation result will increase, or the calculation will fail and an error will be reported.
  • When using this feature for the first time, you need to evaluate the distinct values of the service, properly select configuration parameters, and perform verification to ensure that the accuracy meets requirements.
    • By default, the distinct value is 1.1e + 15. If the distinct value is NaN, you need to adjust log2m or use another algorithm to calculate the distinct value.
    • The hash algorithm has an extremely low probability of collision. However, you are still advised to select 2 or 3 hash seeds for verification when using the hash algorithm for the first time. If there is only a small difference between the distinct values, you can select any one of the seeds as the hash seed.

Table 2 describes main HLL data structures.

Table 2 Main HLL data structures

Data Type

Description

hll

The HLL header is a 27-byte field. By default, the data length ranges from 0 KB to 16 KB. The distinct value can be obtained.

When you create an HLL data type, 0 to 4 input parameters are supported. The parameter meanings and specifications are the same as those of the hll_empty function. The first parameter is log2m, indicating the logarithm of the number of buckets, and its value ranges from 10 to 16. The second parameter is log2explicit, indicating the threshold in explicit mode, and its value ranges from 0 to 12. The third parameter is log2sparse, indicating the threshold of the Sparse mode, and its value ranges from 0 to 14. The fourth parameter is duplicatecheck, indicating whether to enable duplicatecheck, and its value ranges from 0 to 1. When the input parameter is set to –1, the default value of the HLL parameter is used. You can run the \d or \d+ command to view the parameters of the HLL type.

NOTE:

When the HLL data type is created, the result varies depending on the input parameter behavior:

  • When creating an HLL type, do not set the input parameter or set it to –1. Use the default value of the corresponding HLL parameter.
  • If a valid value is set for the input parameter, the corresponding HLL parameter uses the input value.
  • If the input value is invalid, an error is reported when the HLL type is created.
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
-- Create an HLL table without specifying input parameters.
gaussdb=# create table t1 (id integer, set hll);
gaussdb=# \d t1
      Table "public.t1"
 Column |  Type   | Modifiers
--------+---------+-----------
 id     | integer |
 set    | hll     |

-- Create an HLL table, specify the first two input parameters, and use the default values for the last two input parameters.
gaussdb=# create table t2 (id integer, set hll(12,4));
gaussdb=# \d t2
          Table "public.t2"
 Column |      Type      | Modifiers
--------+----------------+-----------
 id     | integer        |
 set    | hll(12,4,12,0) |

-- Create an HLL table, specify the third input parameter, and use default values for other parameters.
gaussdb=# create table t3(id int, set hll(-1,-1,8,-1));
gaussdb=# \d t3
          Table "public.t3"
 Column |      Type      | Modifiers
--------+----------------+-----------
 id     | integer        |
 set    | hll(14,10,8,0) |

-- When a user creates an HLL table and specifies an invalid input parameter, an error is reported.
gaussdb=# create table t4(id int, set hll(5,-1));
ERROR:  log2m = 5 is out of range, it should be in range 10 to 16, or set -1 as default

-- Drop the created HLL table.
gaussdb=# drop table t1,t2,t3;
DROP TABLE
NOTE:

When inserting an HLL object to an HLL table, ensure that the parameters of the HLL type are the same as those of the inserted object. Otherwise, an error is reported.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
-- Create an HLL table.
gaussdb=# create table t1(id integer, set hll(14));
 
-- Insert an HLL object to a table. The insertion succeeds because parameter types are consistent.
gaussdb=# insert into t1 values (1, hll_empty(14,-1));

-- Insert an HLL object to a table. The insertion fails because parameter types are inconsistent.
gaussdb=# insert into t1(id, set) values (1, hll_empty(14,5));
ERROR:  log2explicit does not match: source is 5 and dest is 10

-- Delete the table.
gaussdb=# drop table t1;

The following describes HLL application scenarios:

  • Scenario 1: "Hello World"

    The following example shows how to use the HLL data type:

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    -- Create an HLL table.
    gaussdb=# create table helloworld (id integer, set hll);
     
    -- Insert an empty HLL to the table.
    gaussdb=# insert into helloworld(id, set) values (1, hll_empty());
     
    -- Add a hashed integer to the HLL.
    gaussdb=# update helloworld set set = hll_add(set, hll_hash_integer(12345)) where id = 1;
    
    -- Add a hashed string to the HLL.
    gaussdb=# update helloworld set set = hll_add(set, hll_hash_text('hello world')) where id = 1;
     
    -- Obtain the number of distinct values of the HLL.
    gaussdb=# select hll_cardinality(set) from helloworld where id = 1;
     hll_cardinality 
    -----------------
                   2
    (1 row)
    
    -- Drop the table.
    gaussdb=# drop table helloworld;
    
  • Scenario 2: Collect statistics about website visitors.

    The following example shows how an HLL collects statistics on the number of users visiting a website within a period of time:

     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    -- Create a raw data table to show that a user has visited the website at a certain time:
    gaussdb=# create table facts (
             date            date,
             user_id         integer
    );
     
     -- Create a raw data table to show that a user has visited the website at a certain time:
    gaussdb=# insert into facts values ('2019-02-20', generate_series(1,100));
    gaussdb=# insert into facts values ('2019-02-21', generate_series(1,200));
    gaussdb=# insert into facts values ('2019-02-22', generate_series(1,300));
    gaussdb=# insert into facts values ('2019-02-23', generate_series(1,400));
    gaussdb=# insert into facts values ('2019-02-24', generate_series(1,500));
    gaussdb=# insert into facts values ('2019-02-25', generate_series(1,600));
    gaussdb=# insert into facts values ('2019-02-26', generate_series(1,700));
    gaussdb=# insert into facts values ('2019-02-27', generate_series(1,800));
     
    -- Create another table and specify an HLL column:
    gaussdb=# create table daily_uniques (
        date            date UNIQUE,
        users           hll
    );
     
    -- Group data by date and insert the data into the HLL:
    gaussdb=# insert into daily_uniques(date, users)
        select date, hll_add_agg(hll_hash_integer(user_id))
        from facts
        group by 1;
     
    -- Calculate the numbers of users visiting the website every day.
    gaussdb=# select date, hll_cardinality(users) from daily_uniques order by date;
        date    | hll_cardinality
    ------------+------------------
     2019-02-20 |              100
     2019-02-21 | 200.217913059312
     2019-02-22 |  301.76494508014
     2019-02-23 | 400.862858326446
     2019-02-24 | 502.626933349694
     2019-02-25 | 601.922606454213
     2019-02-26 | 696.602316769498
     2019-02-27 | 798.111731634412
    (8 rows)
     
    -- Calculate the number of users who had visited the website in the week from February 20, 2019 to February 26, 2019.
    gaussdb=# select hll_cardinality(hll_union_agg(users)) from daily_uniques where date >= '2019-02-20'::date and date <= '2019-02-26'::date;
     hll_cardinality  
    ------------------
     696.602316769498
    (1 row)
     
    -- Calculate the number of users who had visited the website yesterday but have not visited the website today:
    gaussdb=# SELECT date, (#hll_union_agg(users) OVER two_days) - #users AS lost_uniques FROM daily_uniques WINDOW two_days AS (ORDER BY date ASC ROWS 1 PRECEDING);      
    -- The default compatibility (MySQL compatibility) results are as follows:
        date    | lost_uniques
    ------------+--------------
     2019-02-20 |            0
     2019-02-21 |            0
     2019-02-22 |            0
     2019-02-23 |            0
     2019-02-24 |            0
     2019-02-25 |            0
     2019-02-26 |            0
     2019-02-27 |            0
    (8 rows)
    
    -- Drop the table.
    gaussdb=# drop table facts;
    gaussdb=# drop table daily_uniques;
    
  • Scenario 3: The data to be inserted does not meet the requirements of the HLL data structure.

    When inserting data into a column of the HLL type, ensure that the data meets the requirements of the HLL data structure. If the data does not meet the requirements after being parsed, an error will be reported. In the following example, 'E\\1234' to be inserted does not meet the requirements of the HLL data structure after being parsed. As a result, an error is reported.

    1
    2
    3
    4
    gaussdb=# create table test(id integer, set hll);
    gaussdb=# insert into test values(1, 'E\\1234');
    ERROR:  not a hll type, size=6 is not enough
    gaussdb=# drop table test;
    

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback