Updated on 2024-05-07 GMT+08:00

Numeric Types

Table 1 lists all available types. For arithmetic operators and related built-in functions, see Arithmetic Functions and Operators.

Table 1 Integer types

Name

Description

Storage Space

Range

TINYINT

Tiny integer, also called INT1

1 byte

0 ~ +255

SMALLINT

Small integer, also called INT2

2 bytes

–32,768 to +32,767

INTEGER

Typical choice for integers, also called INT4

4 bytes

–2,147,483,648 to +2,147,483,647

BINARY_INTEGER

Alias of INTEGER.

4 bytes

–2,147,483,648 to +2,147,483,647

BIGINT

Big integer, also called INT8

8 bytes

–9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

int16

A 16-byte integer cannot be used to create tables.

16 bytes

-170,141,183,460,469,231,731,687,303,715,884,105,728 ~ +170,141,183,460,469,231,731,687,303,715,884,105,727

Example:

-- Create a table containing TINYINT data.
gaussdb=# CREATE TABLE int_type_t1
           (
            IT_COL1 TINYINT
           );

-- Insert data.
gaussdb=# INSERT INTO int_type_t1 VALUES(10);

-- View data.
gaussdb=# SELECT * FROM int_type_t1;
 it_col1  
--------- 
 10
(1 row)

-- Drop the table.
gaussdb=# DROP TABLE int_type_t1;
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
-- Create a table containing TINYINT, INTEGER, and BIGINT data.
gaussdb=# CREATE TABLE int_type_t2 
(
    a TINYINT, 
    b TINYINT,
    c INTEGER,
    d BIGINT
);

-- Insert data.
gaussdb=# INSERT INTO int_type_t2 VALUES(100, 10, 1000, 10000);

-- View data.
gaussdb=# SELECT * FROM int_type_t2;
  a  | b  |  c   |   d   
-----+----+------+-------
 100 | 10 | 1000 | 10000
(1 row)

-- Drop the table.
gaussdb=# DROP TABLE int_type_t2;
  • Numbers of the TINYINT, SMALLINT, INTEGER, BIGINT, or INT16 type, that is, integers can be stored. Saving a number with a decimal in any of the data types will result in errors.
  • The INTEGER type is the common choice, as it offers the best balance between range, storage size, and performance. Generally, use the SMALLINT type only if you are sure that the value range is within the SMALLINT value range. The storage speed of INTEGER is much faster. BIGINT is used only when the range of INTEGER is not large enough.
Table 2 Arbitrary precision types

Name

Description

Storage Space

Range

NUMERIC[(p[,s])],

DECIMAL[(p[,s])]

The value range of p is [1,1000], and the value range of s is [0,p].

NOTE:

p indicates the total digits, and s indicates the decimal digit.

The precision is specified by users. Every four decimal digits occupy two bytes, and an extra eight-byte overhead is added to the entire data.

Up to 131,072 digits before the decimal point, and up to 16,383 digits after the decimal point when no precision is specified.

NUMBER[(p[,s])]

Alias of the NUMERIC type.

The precision is specified by users. Every four decimal digits occupy two bytes, and an extra eight-byte overhead is added to the entire data.

Up to 131,072 digits before the decimal point, and up to 16,383 digits after the decimal point when no precision is specified.

Example:

-- Create a table.
gaussdb=# CREATE TABLE decimal_type_t1 
(
    DT_COL1 DECIMAL(10,4)
);

-- Insert data.
gaussdb=# INSERT INTO decimal_type_t1 VALUES(123456.122331);

-- Query data in the table.
gaussdb=# SELECT * FROM decimal_type_t1;
   dt_col1   
-------------
 123456.1223
(1 row)

-- Drop the table.
gaussdb=# DROP TABLE decimal_type_t1;
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
-- Create a table.
gaussdb=# CREATE TABLE numeric_type_t1 
(
    NT_COL1 NUMERIC(10,4)
);

-- Insert data.
gaussdb=# INSERT INTO numeric_type_t1 VALUES(123456.12354);

-- Query data in the table.
gaussdb=# SELECT * FROM numeric_type_t1;
   nt_col1   
-------------
 123456.1235
(1 row)

-- Drop the table.
gaussdb=# DROP TABLE numeric_type_t1;
  • Compared to the integer types, the arbitrary precision numbers require larger storage space and have lower storage efficiency, operation efficiency, and poorer compression ratio results. The INTEGER type is the common choice when number types are defined. Arbitrary precision numbers are used when numbers exceed the maximum range indicated by the integers.
  • When NUMERIC/DECIMAL is used for defining a column, you are advised to specify the precision (p) and scale (s) for the column.
Table 3 Sequence integer

Name

Description

Storage Space

Range

SMALLSERIAL

Two-byte serial integer

2 bytes.

–32,768 to +32,767.

SERIAL

Four-byte serial integer

4 bytes.

–2,147,483,648 to +2,147,483,647.

BIGSERIAL

Eight-byte serial integer

8 bytes.

–9,223,372,036,854,775,808 to +9,223,372,036,854,775,807.

Example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
-- Create a table.
gaussdb=# CREATE TABLE smallserial_type_tab(a SMALLSERIAL);

-- Insert data.
gaussdb=# INSERT INTO smallserial_type_tab VALUES(default);

-- Insert data again.
gaussdb=# INSERT INTO smallserial_type_tab VALUES(default);

-- View data.
gaussdb=# SELECT * FROM smallserial_type_tab;  
 a 
---
 1
 2
(2 rows)

-- Create a table.
gaussdb=# CREATE TABLE serial_type_tab(b SERIAL);

-- Insert data.
gaussdb=# INSERT INTO serial_type_tab VALUES(default);

-- Insert data again.
gaussdb=# INSERT INTO serial_type_tab VALUES(default);

-- View data.
gaussdb=# SELECT * FROM serial_type_tab; 
 b 
---
 1
 2
(2 rows)

-- Create a table.
gaussdb=# CREATE TABLE bigserial_type_tab(c BIGSERIAL);

-- Insert data.
gaussdb=# INSERT INTO bigserial_type_tab VALUES(default);

-- Insert data again.
gaussdb=# INSERT INTO bigserial_type_tab VALUES(default);

-- View data.
gaussdb=# SELECT * FROM bigserial_type_tab;
 c 
---
 1
 2
(2 rows)

-- Drop the table.
gaussdb=# DROP TABLE smallserial_type_tab;

gaussdb=# DROP TABLE serial_type_tab;

gaussdb=# DROP TABLE bigserial_type_tab;

SMALLSERIAL, SERIAL, and BIGSERIAL are not real types. They are concepts used for setting a unique identifier for a table. Therefore, an integer column is created and its default value plans to be read from a sequencer. A NOT NULL constraint is used to ensure NULL is not inserted. In most cases you would also want to attach an UNIQUE or PRIMARY KEY constraint to prevent duplicate values from being inserted unexpectedly, but this is not automatic. Finally, the sequencer belongs to the column. In this case, when the column or the table is deleted, the sequencer is also deleted. Currently, the SERIAL column can be specified only when you create a table. You cannot add the SERIAL column in an existing table. In addition, SERIAL columns cannot be created in temporary tables. Because SERIAL is not a data type, columns cannot be converted to this type.

Table 4 Floating-point types

Name

Description

Storage Space

Range

REAL,

FLOAT4

Single precision floating points, which is not very precise.

4 bytes.

–3.402E+38 to +3.402E+38, 6-bit decimal digits.

DOUBLE PRECISION,

FLOAT8

Double precision floating points, which is not very precise.

8 bytes.

–1.79E+308 to +1.79E+308, 15-bit decimal digits.

FLOAT[(p)]

Floating-point number, which is not very precise. The value range of precision (p) is [1,53].

NOTE:

p is the precision, indicating the total number of binary bits.

4 bytes or 8 bytes.

REAL or DOUBLE PRECISION is selected as an internal identifier based on precision (p). If no precision is specified, DOUBLE PRECISION is used as the internal identifier.

BINARY_DOUBLE

DOUBLE PRECISION alias, compatible with Oracle.

8 bytes.

–1.79E+308 to +1.79E+308, 15-bit decimal digits.

DEC[(p[,s])]

The value range of p (precision) is [1,1000], and the value range of s (scale) is [0,p].

NOTE:

p indicates the total digits, and s indicates the decimal digit.

The precision is specified by users. Every four decimal digits occupy two bytes, and an extra eight-byte overhead is added to the entire data.

Maximum 131,072 digits before the decimal point and 16,383 digits after the decimal point when the precision and scale are specified to the maximum.

INTEGER[(p[,s])]

The value range of p is [1,1000], and the value range of s is [0,p].

If the precision and scale are not specified, the precision p is 10 and the scale s is 0 by default.

If the precision and scale are not specified, this type is mapped to INTEGER. If the precision and scale are specified, this type is mapped to NUMERIC.

The precision is specified by users. Every four decimal digits occupy two bytes, and an extra eight-byte overhead is added to the entire data.

Maximum 131,072 digits before the decimal point and 16,383 digits after the decimal point when the precision and scale are specified to the maximum.

If the precision and scale are not specified, the value ranges from –2,147,483,648 to +2,147,483,647.

  • For the precision of the floating-point type, only the number of precision bits can be ensured when the data is directly read. When distributed computing is involved, the computation is executed on each DN and is finally aggregated to a CN. Therefore, the error may be amplified as the number of compute nodes increases.
  • In Table 4, p is the precision, indicating the minimum acceptable total number of integral places, and s indicates the decimal digit.

Example:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
-- Create a table.
gaussdb=# CREATE TABLE float_type_t2 
(
    FT_COL1 INTEGER,
    FT_COL2 FLOAT4,
    FT_COL3 FLOAT8,
    FT_COL4 FLOAT(3),
    FT_COL5 BINARY_DOUBLE,
    FT_COL6 DECIMAL(10,4),
    FT_COL7 INTEGER(6,3)
)DISTRIBUTE BY HASH ( ft_col1);

-- Insert data.
gaussdb=# INSERT INTO float_type_t2 VALUES(10,10.365456,123456.1234,10.3214, 321.321, 123.123654, 123.123654);

-- View data.
gaussdb=# SELECT * FROM float_type_t2 ;
 ft_col1 | ft_col2 |   ft_col3   | ft_col4 | ft_col5 | ft_col6  | ft_col7 
---------+---------+-------------+---------+---------+----------+---------
      10 | 10.3655 | 123456.1234 | 10.3214 | 321.321 | 123.1237 | 123.124
(1 row)

-- Drop the table.
gaussdb=# DROP TABLE float_type_t2;