Compute
Elastic Cloud Server
Huawei Cloud Flexus
Bare Metal Server
Auto Scaling
Image Management Service
Dedicated Host
FunctionGraph
Cloud Phone Host
Huawei Cloud EulerOS
Networking
Virtual Private Cloud
Elastic IP
Elastic Load Balance
NAT Gateway
Direct Connect
Virtual Private Network
VPC Endpoint
Cloud Connect
Enterprise Router
Enterprise Switch
Global Accelerator
Management & Governance
Cloud Eye
Identity and Access Management
Cloud Trace Service
Resource Formation Service
Tag Management Service
Log Tank Service
Config
OneAccess
Resource Access Manager
Simple Message Notification
Application Performance Management
Application Operations Management
Organizations
Optimization Advisor
IAM Identity Center
Cloud Operations Center
Resource Governance Center
Migration
Server Migration Service
Object Storage Migration Service
Cloud Data Migration
Migration Center
Cloud Ecosystem
KooGallery
Partner Center
User Support
My Account
Billing Center
Cost Center
Resource Center
Enterprise Management
Service Tickets
HUAWEI CLOUD (International) FAQs
ICP Filing
Support Plans
My Credentials
Customer Operation Capabilities
Partner Support Plans
Professional Services
Analytics
MapReduce Service
Data Lake Insight
CloudTable Service
Cloud Search Service
Data Lake Visualization
Data Ingestion Service
GaussDB(DWS)
DataArts Studio
Data Lake Factory
DataArts Lake Formation
IoT
IoT Device Access
Others
Product Pricing Details
System Permissions
Console Quick Start
Common FAQs
Instructions for Associating with a HUAWEI CLOUD Partner
Message Center
Security & Compliance
Security Technologies and Applications
Web Application Firewall
Host Security Service
Cloud Firewall
SecMaster
Anti-DDoS Service
Data Encryption Workshop
Database Security Service
Cloud Bastion Host
Data Security Center
Cloud Certificate Manager
Edge Security
Managed Threat Detection
Blockchain
Blockchain Service
Web3 Node Engine Service
Media Services
Media Processing Center
Video On Demand
Live
SparkRTC
MetaStudio
Storage
Object Storage Service
Elastic Volume Service
Cloud Backup and Recovery
Storage Disaster Recovery Service
Scalable File Service Turbo
Scalable File Service
Volume Backup Service
Cloud Server Backup Service
Data Express Service
Dedicated Distributed Storage Service
Containers
Cloud Container Engine
SoftWare Repository for Container
Application Service Mesh
Ubiquitous Cloud Native Service
Cloud Container Instance
Databases
Relational Database Service
Document Database Service
Data Admin Service
Data Replication Service
GeminiDB
GaussDB
Distributed Database Middleware
Database and Application Migration UGO
TaurusDB
Middleware
Distributed Cache Service
API Gateway
Distributed Message Service for Kafka
Distributed Message Service for RabbitMQ
Distributed Message Service for RocketMQ
Cloud Service Engine
Multi-Site High Availability Service
EventGrid
Dedicated Cloud
Dedicated Computing Cluster
Business Applications
Workspace
ROMA Connect
Message & SMS
Domain Name Service
Edge Data Center Management
Meeting
AI
Face Recognition Service
Graph Engine Service
Content Moderation
Image Recognition
Optical Character Recognition
ModelArts
ImageSearch
Conversational Bot Service
Speech Interaction Service
Huawei HiLens
Video Intelligent Analysis Service
Developer Tools
SDK Developer Guide
API Request Signing Guide
Terraform
Koo Command Line Interface
Content Delivery & Edge Computing
Content Delivery Network
Intelligent EdgeFabric
CloudPond
Intelligent EdgeCloud
Solutions
SAP Cloud
High Performance Computing
Developer Services
ServiceStage
CodeArts
CodeArts PerfTest
CodeArts Req
CodeArts Pipeline
CodeArts Build
CodeArts Deploy
CodeArts Artifact
CodeArts TestPlan
CodeArts Check
CodeArts Repo
Cloud Application Engine
MacroVerse aPaaS
KooMessage
KooPhone
KooDrive

Lock Management

Updated on 2023-10-23 GMT+08:00

In GaussDB, a deadlock may occur when concurrently executed transactions compete for resources. This section describes parameters used for managing transaction locks.

deadlock_timeout

Parameter description: Specifies the time, in milliseconds, to wait on a lock before checking whether there is a deadlock condition. When the applied lock exceeds the preset value, the system will check whether a deadlock occurs. This parameter takes effect only for common locks.

  • The check for deadlock is relatively expensive. Therefore, the server does not check it when waiting for a lock every time. Deadlocks do not frequently occur when the system is running. Therefore, the system just needs to wait on the lock for a while before checking for a deadlock. Increasing this value reduces the time wasted in needless deadlock checks, but slows down reporting of real deadlock errors. On a heavily loaded server, you may need to raise it. The value you have set needs to exceed the transaction time. By doing this, the possibility that a lock will be checked for deadlocks before it is released will be reduced.
  • If you want to write the lock wait time during query execution to logs by setting log_lock_waits, ensure that the value of log_lock_waits is less than the specified value (or the default value) of deadlock_timeout.

This parameter is a SUSET parameter. Set it based on instructions provided in Table 1.

Value range: an integer ranging from 1 to 2147483647. The unit is ms.

Default value: 1s

lockwait_timeout

Parameter description: Specifies the timeout for attempts to acquire a lock. If the time spent in waiting for a lock exceeds the specified time, an error is reported. This parameter takes effect only for common locks.

This parameter is a SUSET parameter. Set it based on instructions provided in Table 1.

Value range: an integer ranging from 0 to 2147483647. The unit is ms.

Default value: 20min

update_lockwait_timeout

Parameter description: Specifies the maximum duration that a lock waits for concurrent updates on a row to complete when the concurrent update feature is enabled. If the time spent in waiting for a lock exceeds the specified time, an error is reported. This parameter takes effect only for common locks.

This parameter is a SUSET parameter. Set it based on instructions provided in Table 1.

Value range: an integer ranging from 0 to 2147483647. The unit is ms.

Default value: 120000 (2 minutes)

max_locks_per_transaction

Parameter description: Determines the average number of object locks allocated for each transaction.

  • The size of the shared lock table is calculated under the condition that a maximum of N independent objects need to be locked at any time. N = max_locks_per_transaction x (max_connections + max_prepared_transactions). Objects whose amount does not exceed the preset number can be locked simultaneously at any time. You may need to increase this value if many different tables are modified in a single transaction. This parameter can only be set at database start.
  • Increasing the value of this parameter may cause GaussDB to request more System V-shared memory than the OS's default configuration allows.
  • When running a standby server, you must set this parameter to a value that is no less than that on the primary server. Otherwise, queries will not be allowed on the standby server.

This parameter is a POSTMASTER parameter. Set it based on instructions provided in Table 1.

Value range: an integer ranging from 10 to 2147483647

Default value: 256

max_pred_locks_per_transaction

Parameter description: Specifies the average number of predicate locks allocated for each transaction.

  • The size of the shared predicate lock table is calculated under the condition that a maximum of N independent objects need to be locked at any time. N = max_pred_locks_per_transaction x (max_connections + max_prepared_transactions). Objects whose amount does not exceed the preset number can be locked simultaneously at any time. You may need to increase this value if many different tables are modified in a single transaction. This parameter can only be set at server start.
  • Increasing the value of this parameter may cause GaussDB to request more System V-shared memory than the OS's default configuration allows.

This parameter is a POSTMASTER parameter. Set it based on instructions provided in Table 1.

Value range: an integer ranging from 10 to 2147483647

Default value: 64

gs_clean_timeout

Parameter description: Controls the average interval between gs_clean invocations by the Coordinator.

  • Transactions in GaussDB are committed in two phases. An unfinished two-phase transaction may hold a table-level lock, keeping tables from being locked by other connections. In this case, the database needs to invoke the gs_clean tool to clean unfinished two-phase transactions. gs_clean_timeout is used to control the interval for the Coordinator to invoke the gs_clean tool.
  • A larger value of this parameter indicates a low frequency of gs_clean invocation to clean unfinished two-phase transactions.

This parameter is a SIGHUP parameter. Set it based on instructions provided in Table 1.

Value range: an integer ranging from 0 to 2147483. The unit is s.

Default value: 1min

partition_lock_upgrade_timeout

Parameter description: Specifies the timeout for attempts to upgrade an exclusive lock (read allowed) to an access exclusive lock (read/write blocked) on a partitioned table during the execution of some query statements. If there are concurrent read transactions running, the lock upgrade will need to wait. This parameter sets the waiting timeout for lock upgrade attempts.

  • When you do MERGE PARTITION and CLUSTER PARTITION on a partitioned table, temporary tables are used for data rearrangement and file exchange. To concurrently perform as many operations as possible on the partitions, exclusive locks are acquired for the partitions during data rearrangement and access exclusive locks are acquired during file exchange.
  • Generally, a partition waits until it acquires a lock, or a timeout occurs if the partition waits for a period longer than the value specified by the lockwait_timeout parameter.
  • When doing MERGE PARTITION or CLUSTER PARTITION on a partitioned table, an access exclusive lock needs to be acquired during file exchange. If the lock fails to be acquired, the acquisition is retried at an interval of 50 ms until timeout occurs. The partition_lock_upgrade_timeout parameter specifies the time to wait before the lock acquisition attempt times out.
  • If this parameter is set to –1, the lock upgrade never times out. The lock upgrade is continuously retried until it succeeds.

    This parameter is a USERSET parameter. Set it based on instructions provided in Table 1.

Value range: an integer ranging from –1 to 3000. The unit is s.

Default value: 1800

fault_mon_timeout

Parameter description: Specifies the period for detecting lightweight deadlocks. This parameter is a SIGHUP parameter. Set it based on instructions provided in Table 1.

Value range: an integer ranging from 0 to 1440. The unit is minute.

Default value: 5min

enable_online_ddl_waitlock

Parameter description: Specifies whether to block DDL operations to wait for the release of cluster locks, such as pg_advisory_lock and pgxc_lock_for_backup. This parameter is mainly used in online OM operations and you are not advised to modify the settings.

This parameter is a SIGHUP parameter. Set it based on instructions provided in Table 1.

Value range: Boolean

  • on: enabled.
  • off: disabled.

Default value: off

xloginsert_locks

Parameter description: Specifies the number of locks on concurrent write-ahead logging. This parameter is used to improve the efficiency of writing write-ahead logs.

This parameter is a POSTMASTER parameter. Set it based on instructions provided in Table 1.

Value range: an integer ranging from 1 to 1000

Default value: 16

num_internal_lock_partitions

Parameter description: Specifies the number of internal lightweight lock partitions. It is mainly used for performance optimization in various scenarios. The content is organized in the KV format of keywords and numbers. Different types of locks are separated by commas (,). The sequence does not affect the setting result. For example, CLOG_PART=256,CSNLOG_PART=512 is equivalent to CSNLOG_PART=512,CLOG_PART=256. If you set the same keyword multiple times, only the latest setting takes effect. For example, if you set CLOG_PART to 256 and CLOG_PART to 2, the value of CLOG_PART is 2. If no keyword is set, the default value is used. The usage description, maximum value, minimum value, and default value of each lock type are as follows:

  • CLOG_PART: number of Clog file controllers. Increasing the value of this parameter improves the Clog writing efficiency and transaction submission performance, but increases the memory usage. Decreasing the value of this parameter reduces the memory usage, but may increase the conflict of writing Clogs and affect the performance. The value ranges from 1 to 256.
  • CSNLOG_PART: number of CSNLOG file controllers. Increasing the value of this parameter improves the CSNLOG log writing efficiency and transaction submission performance, but increases the memory usage. Decreasing the value of this parameter reduces the memory usage, but may increase the conflict of writing CSNLOG logs and affect the performance. The value ranges from 1 to 512.
  • LOG2_LOCKTABLE_PART: two logarithms of the number of common table lock partitions. Increasing the value can improve the concurrency of obtaining locks in the normal process, but may increase the time required for transferring and clearing locks. When waiting events occur in LockMgrLock, you can increase the value to improve the performance. The minimum value is 4, that is, the number of lock partitions is 16. The maximum value is 16, that is, the number of lock partitions is 65536.
  • TWOPHASE_PART: number of partitions of the two-phase transaction lock. Increasing the value can increase the number of concurrent two-phase transaction commits. The value ranges from 1 to 64.
  • FASTPATH_PART: maximum number of locks that each thread can obtain without using the primary lock table. Increasing the value of this parameter will consume more memory. The value ranges from 20 to 10000.

This parameter is a POSTMASTER parameter. Set it based on instructions provided in Table 1.

Value range: a string

Default value:

  • CLOG_PART: 256
  • CSNLOG_PART: 512
  • LOG2_LOCKTABLE_PART: 4
  • TWOPHASE_PART: 1
  • FASTPATH_PART: 20

We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out more

Feedback

Feedback

Feedback

0/500

Selected Content

Submit selected content with the feedback