文档首页> AI开发平台ModelArts> 使用自定义镜像> 使用自定义镜像训练模型(新版训练)> 示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU)
更新时间:2023-01-29 GMT+08:00
分享

示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU)

本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。

本实践教程仅适用于新版训练作业。

场景描述

本示例使用 Linux x86_64 架构的主机,操作系统ubuntu-18.04,通过编写 Dockerfile 文件制作自定义镜像。

目标:构建安装如下软件的容器镜像,并在ModelArts平台上使用CPU/GPU规格资源运行训练任务。

  • ubuntu-18.04
  • cuda-10.2
  • python-3.7.13
  • openmpi-3.0.0

操作流程

使用自定义镜像创建训练作业时,需要您熟悉docker软件的使用,并具备一定的开发经验。详细步骤如下所示:

  1. 前提条件
  2. Step1 创建OBS桶和文件夹
  3. Step2 准备脚本文件并上传至OBS中
  4. Step3 准备镜像主机
  5. Step4 制作自定义镜像
  6. Step5 上传镜像至SWR服务
  7. Step6 在ModelArts上创建训练作业

前提条件

已注册华为云账号,且在使用 ModelArts 前检查账号状态,账号不能处于欠费或冻结状态。

Step1 创建OBS桶和文件夹

在OBS服务中创建桶和文件夹,用于存放样例数据集以及训练代码。需要创建的文件夹列表如表1所示,示例中的桶名称“test-modelarts” 和文件夹名称均为举例,请替换为用户自定义的名称。

创建 OBS 桶和文件夹的操作指导请参见创建桶新建文件夹

请确保您使用的 OBS 与 ModelArts 在同一区域。

表1 OBS桶文件夹列表

文件夹名称

用途

“obs://test-modelarts/mpi/demo-code/”

用于存储 MPI 启动脚本与训练脚本文件。

“obs://test-modelarts/mpi/log/”

用于存储训练日志文件。

Step2 准备脚本文件并上传至OBS中

准备本案例所需的MPI启动脚本run_mpi.sh文件和训练脚本mpi-verification.py文件,并上传至OBS桶的“obs://test-modelarts/mpi/demo-code/”文件夹下。

  • MPI启动脚本run_mpi.sh文件内容如下:
    #!/bin/bash
    MY_HOME=/home/ma-user
    
    MY_SSHD_PORT=${MY_SSHD_PORT:-"36666"}
    
    MY_MPI_BTL_TCP_IF=${MY_MPI_BTL_TCP_IF:-"eth0,bond0"}
    
    MY_TASK_INDEX=${MA_TASK_INDEX:-${VC_TASK_INDEX:-${VK_TASK_INDEX}}}
    
    MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"}
    
    MY_MPI_TUNE_FILE="${MY_HOME}/env_for_user_process"
    
    if [ -z ${MY_MPI_SLOTS} ]; then
        echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1"
        MY_MPI_SLOTS="1"
    fi
    
    printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: ${MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n"
    
    env | grep -E '^MA_|^AWS_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > ${MY_MPI_TUNE_FILE}
    # add -x to each line
    sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE}
    
    sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config
    
    # start sshd service
    bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config"
    
    # confirm the sshd is up
    netstat -anp | grep LIS | grep ${MY_SSHD_PORT}
    
    if [ $MY_TASK_INDEX -eq 0 ]; then
        # generate the hostfile of mpi
        for ((i=0; i<$MA_NUM_HOSTS; i++))
        do
            eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME}
            echo "[run_mpi] hostname: ${hostname}"
    
            ip=""
            while [ -z "$ip" ]; do
                ip=$(ping -c 1 ${hostname} | grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g')
                sleep 1
            done
            echo "[run_mpi] resolved ip: ${ip}"
    
            # test the sshd is up
            while :
            do
                if [ cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT} ]; then
                    break
                fi
                sleep 1
            done
    
            echo "[run_mpi] the sshd of ip ${ip} is up"
    
            echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile
        done
    
        printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
    fi
    
    RET_CODE=0
    
    if [ $MY_TASK_INDEX -eq 0 ]; then
    
        echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S")
    
        np=$(( ${MA_NUM_HOSTS} * ${MY_MPI_SLOTS} ))
    
        echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY_HOME}/hostfile -mca plm_rsh_args \"-p ${MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@"
    
        # execute mpirun at worker-0
        # mpirun
        mpirun \
            -np ${np} \
            -hostfile ${MY_HOME}/hostfile \
            -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
            -tune ${MY_MPI_TUNE_FILE} \
            -bind-to none -map-by slot \
            -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=${MY_MPI_BTL_TCP_IF} -x NCCL_SOCKET_FAMILY=AF_INET \
            -x HOROVOD_MPI_THREADS_DISABLE=1 \
            -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \
            "$@"
    
        RET_CODE=$?
    
        if [ $RET_CODE -ne 0 ]; then
            echo "[run_mpi] exec command failed, exited with $RET_CODE"
        else
            echo "[run_mpi] exec command successfully, exited with $RET_CODE"
        fi
    
        # stop 1...N worker by killing the sleep proc
        sed -i '1d' ${MY_HOME}/hostfile
        if [ `cat ${MY_HOME}/hostfile | wc -l` -ne 0 ]; then
            echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc"
    
            sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile
            printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
    
            mpirun \
            --hostfile ${MY_HOME}/hostfile \
            --mca btl_tcp_if_include ${MY_MPI_BTL_TCP_IF} \
            --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
            -x PATH -x LD_LIBRARY_PATH \
            pkill sleep \
            > /dev/null 2>&1
        fi
    
        echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
    else
        echo "[run_mpi] the training log is in worker-0"
        sleep 365d
        echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
    fi
    
    exit $RET_CODE

    run_mpi.sh脚本需要以LF作为换行符。使用CRLF作为换行符会导致训练作业运行失败,日志中会打印 $'\r': command not found 的错误信息。

  • 训练脚本mpi-verification.py文件内容如下:
    import os
    import socket
    
    if __name__ == '__main__':
        print(socket.gethostname())
    
        # https://www.open-mpi.org/faq/?category=running#mpi-environmental-variables
        print('OMPI_COMM_WORLD_SIZE: ' + os.environ['OMPI_COMM_WORLD_SIZE'])
        print('OMPI_COMM_WORLD_RANK: ' + os.environ['OMPI_COMM_WORLD_RANK'])
        print('OMPI_COMM_WORLD_LOCAL_RANK: ' + os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])

Step3 准备镜像主机

准备一台Linux x86_64架构的主机,操作系统使用ubuntu-18.04。您可以准备相同规格的弹性云服务器ECS或者应用本地已有的主机进行自定义镜像的制作。

购买ECS服务器的具体操作请参考购买并登录弹性云服务器。镜像选择公共镜像,推荐使用ubuntu18.04的镜像。
图1 创建ECS服务器-选择X86架构的公共镜像

Step4 制作自定义镜像

目标:构建安装好如下软件的容器镜像,并使用 ModelArts 训练服务运行。

  • ubuntu-18.04
  • cuda-10.2
  • python-3.7.13
  • openmpi-3.0.0

此处介绍如何通过编写 Dockerfile 文件制作自定义镜像的操作步骤。

  1. 安装Docker。

    以 Linux x86_64架构的操作系统为例,获取 Docker 安装包。您可以使用以下指令安装Docker。关于安装Docker的更多指导内容参见 Docker 官方文档

    curl -fsSL get.docker.com -o get-docker.sh
    sh get-docker.sh

    如果 docker images 命令可以执行成功,表示 Docker 已安装,此步骤可跳过。

  2. 确认Docker Engine版本。执行如下命令。
    docker version | grep -A 1 Engine
    命令回显如下。
     Engine:
      Version:          18.09.0

    推荐使用大于等于该版本的 Docker Engine 来制作自定义镜像。

  3. 准备名为 context 的文件夹。
    mkdir -p context
  4. 下载 Miniconda3 安装文件。

    使用地址 https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-x86_64.sh, 下载Miniconda3 py37 4.12.0安装文件(对应 python 3.7.13)。

  5. 下载 openmpi 3.0.0安装文件。

    使用地址https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz, 下载 horovod v0.22.1已经编译好的 openmpi 3.0.0 文件。

  6. 将上述Miniconda3安装文件、openmpi 3.0.0文件放置在context文件夹内,context 文件夹内容如下。
    context
    ├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
    └── openmpi-3.0.0-bin.tar.gz
  7. 编写容器镜像Dockerfile文件。
    在context 文件夹内新建名为Dockerfile 的空文件,并将下述内容写入其中。
    # 容器镜像构建主机需要连通公网
    
    # 基础容器镜像, https://github.com/NVIDIA/nvidia-docker/wiki/CUDA
    #
    # https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
    # require Docker Engine >= 17.05
    #
    # builder stage
    FROM nvidia/cuda:10.2-runtime-ubuntu18.04 AS builder
    
    # 基础容器镜像的默认用户已经是 root
    # USER root
    
    # 拷贝 Miniconda3 (python 3.7.13) 安装文件到基础容器镜像中的 /tmp 目录
    COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp
    
    # 安装 Miniconda3 到基础容器镜像的 /home/ma-user/miniconda3 目录中
    # https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
    RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3
    
    # 构建最终容器镜像
    FROM nvidia/cuda:10.2-runtime-ubuntu18.04
    
    # 安装 vim / curl / net-tools / ssh 工具(依然使用华为开源镜像站)
    RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
        sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
        sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
        echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
        apt-get update && \
        apt-get install -y vim curl net-tools iputils-ping \
        openssh-client openssh-server && \
        ssh -V && \
        mkdir -p /run/sshd && \
        apt-get clean && \
        mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
        rm /etc/apt/apt.conf.d/00skip-verify-peer.conf
    
    # 安装 horovod v0.22.1 已经编译好的 openmpi 3.0.0 文件
    # https://github.com/horovod/horovod/blob/v0.22.1/docker/horovod/Dockerfile
    # https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz
    COPY openmpi-3.0.0-bin.tar.gz /tmp
    RUN cd /usr/local && \
        tar -zxf /tmp/openmpi-3.0.0-bin.tar.gz && \
        ldconfig && \
        mpirun --version
    
    # 增加 ma-user 用户 (uid = 1000, gid = 100)
    # 注意到基础容器镜像已存在 gid = 100 的组,因此 ma-user 用户可直接使用
    RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user
    
    # 从上述 builder stage 中拷贝 /home/ma-user/miniconda3 目录到当前容器镜像的同名目录
    COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3
    
    # 设置容器镜像预置环境变量
    # 请务必设置 PYTHONUNBUFFERED=1, 以免日志丢失
    ENV PATH=$PATH:/home/ma-user/miniconda3/bin \
        PYTHONUNBUFFERED=1
    
    # 设置容器镜像默认用户与工作目录
    USER ma-user
    WORKDIR /home/ma-user
    
    # 配置 sshd,使得 ssh 可以免密登录
    RUN MA_HOME=/home/ma-user && \
        # setup sshd dir
        mkdir -p ${MA_HOME}/etc && \
        ssh-keygen -f ${MA_HOME}/etc/ssh_host_rsa_key -N '' -t rsa  && \
        mkdir -p ${MA_HOME}/etc/ssh ${MA_HOME}/var/run  && \
        # setup sshd config (listen at {{MY_SSHD_PORT}} port)
        echo "Port {{MY_SSHD_PORT}}\n\
    HostKey ${MA_HOME}/etc/ssh_host_rsa_key\n\
    AuthorizedKeysFile ${MA_HOME}/.ssh/authorized_keys\n\
    PidFile ${MA_HOME}/var/run/sshd.pid\n\
    StrictModes no\n\
    UsePAM no" > ${MA_HOME}/etc/ssh/sshd_config && \
        # generate ssh key
        ssh-keygen -t rsa -f ${MA_HOME}/.ssh/id_rsa -P '' && \
        cat ${MA_HOME}/.ssh/id_rsa.pub >> ${MA_HOME}/.ssh/authorized_keys && \
        # disable ssh host key checking for all hosts
        echo "Host *\n\
      StrictHostKeyChecking no" > ${MA_HOME}/.ssh/config

    关于Dockerfile文件编写的更多指导内容参见 Docker 官方文档

  8. 确认已创建完成 Dockerfile 文件。此时context文件夹内容如下。
    context
    ├── Dockerfile
    ├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
    └── openmpi-3.0.0-bin.tar.gz
  9. 构建容器镜像。在Dockerfile文件所在的目录执行如下命令构建容器镜像mpi:3.0.0-cuda10.2。
    1
    docker build . -t mpi:3.0.0-cuda10.2
    
    构建过程结束时出现如下构建日志说明镜像构建成功。
    Successfully tagged mpi:3.0.0-cuda10.2

Step5 上传镜像至SWR服务

  1. 登录容器镜像服务控制台,选择区域。
    图2 容器镜像服务控制台
  2. 单击右上角“创建组织”,输入组织名称完成组织创建。请自定义组织名称,本示例使用“deep-learning”,下面的命令中涉及到组织名称“deep-learning”也请替换为自定义的值。
    图3 创建组织
  3. 单击右上角“登录指令”,获取登录访问指令。
    图4 登录指令
  4. 以root用户登录本地环境,输入登录访问指令。
  5. 上传镜像至容器镜像服务镜像仓库。
    1. 使用docker tag命令给上传镜像打标签。
      #region和domain信息请替换为实际值,组织名称deep-learning也请替换为自定义的值。
      sudo docker tag mpi:3.0.0-cuda10.2 swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-cuda10.2
    2. 使用docker push命令上传镜像。
      #region和domain信息请替换为实际值,组织名称deep-learning也请替换为自定义的值。
      sudo docker push swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-cuda10.2
  6. 完成镜像上传后,在“容器镜像服务控制台>我的镜像”页面可查看已上传的自定义镜像。

    “swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-cuda10.2”即为此自定义镜像的“SWR_URL”

Step6 在ModelArts上创建训练作业

  1. 登录ModelArts管理控制台,检查当前账号是否已完成访问授权的配置。如未完成,请参考使用委托授权针对之前使用访问密钥授权的用户,建议清空授权,然后使用委托进行授权。
  2. 在ModelArts管理控制台,左侧导航栏中选择“训练管理 > 训练作业 New”,默认进入“训练作业”列表。
  3. “创建训练作业”页面,填写相关参数信息,然后单击“提交”
    • 创建方式:选择“自定义算法”
    • 启动方式:选择“自定义”
    • 镜像地址:“swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-cuda10.2”
    • 代码目录:设置为OBS中存放启动脚本文件的目录,例如:“obs://test-modelarts/mpi/demo-code/”
    • 启动命令:bash ${MA_JOB_DIR}/demo-code/run_mpi.sh python ${MA_JOB_DIR}/demo-code/mpi-verification.py
    • 环境变量:添加 MY_SSHD_PORT = 38888
      图5 添加环境变量示意
    • 资源池:选择公共资源池
    • 类型:选择GPU规格
    • 计算节点个数:选择 1或 2
    • 永久保存日志:打开
    • 作业日志路径:设置为OBS中存放训练日志的路径。例如:“obs://test-modelarts/mpi/log/”
  4. “规格确认”页面,确认训练作业的参数信息,确认无误后单击“提交”
  5. 训练作业创建完成后,后台将自动完成容器镜像下载、代码目录下载、执行启动命令等动作。

    训练作业一般需要运行一段时间,根据您的训练业务逻辑和选择的资源不同,训练时长将持续几十分钟到几小时不等。训练作业执行成功后,日志信息如图6所示。

    图6 1个计算节点GPU 规格 worker-0 运行日志信息

    计算节点个数选择为 2,训练作业也可以运行。日志信息如图7图8所示。

    图7 2个计算节点worker-0 运行日志信息
    图8 2个计算节点worker-1 运行日志信息
分享:

    相关文档

    相关产品